A reduced-complexity online state sequence and parameter estimator for superimposed convolutional coded signals

This paper develops a reduced-complexity online state sequence and parameter estimator for superimposed convolutional coded signals. Joint state sequence and parameter estimation is achieved by iteratively estimating the state sequence via a variable reduced-complexity Viterbi algorithm (VRCVA) and the model parameters via a recursive expectation maximization (EM) approach. The VRCVA is developed from a fixed reduced-complexity Viterbi algorithm (FRCVA). The FRCVA is a special case of the delayed decision-feedback sequence estimation (DDFSE) algorithm. The performance of online versions of the FRCVA, VRCVA, and the standard Viterbi algorithm (VA) are compared when they are used to estimate the state sequence as part of the reduced-complexity online state sequence and parameter estimator.

[1]  Ehud Weinstein,et al.  Sequential algorithms for parameter estimation based on the Kullback-Leibler information measure , 1990, IEEE Trans. Acoust. Speech Signal Process..

[2]  John B. Anderson,et al.  Sequential Coding Algorithms: A Survey and Cost Analysis , 1984, IEEE Trans. Commun..

[3]  Langford B. White,et al.  Spatial filtering of superimposed convolutional coded signals , 1997, IEEE Trans. Commun..

[4]  Shahid U. H. Qureshi,et al.  Reduced-state sequence estimation with set partitioning and decision feedback , 1988, IEEE Trans. Commun..

[5]  Takeshi Hattori,et al.  Overview of wireless personal communications , 1995, IEEE Commun. Mag..

[6]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  R. Steele,et al.  Mobile Radio Communications , 1999 .

[8]  Biing-Hwang Juang,et al.  The segmental K-means algorithm for estimating parameters of hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  Gordon L. Stüber,et al.  Error probability of reduced-state sequence estimation for trellis-coded modulation on intersymbol interference channels , 1993, IEEE Trans. Commun..

[10]  Alexandra Duel-Hallen,et al.  Delayed decision-feedback sequence estimation , 1989, IEEE Trans. Commun..

[11]  Gordon L. Stüber,et al.  Error Probability for Reduced-State Sequence Estimation , 1992, IEEE J. Sel. Areas Commun..

[12]  John B. Anderson,et al.  Reduced-state sequence detection with convolutional codes , 1994, IEEE Trans. Inf. Theory.

[13]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[14]  John B. Moore,et al.  On-line estimation of hidden Markov model parameters based on the Kullback-Leibler information measure , 1993, IEEE Trans. Signal Process..

[15]  V. Krishnamurthy Adaptive estimation of hidden nearly completely decomposable Markov chains with applications in blind equalization , 1994 .

[16]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[17]  L.B. White,et al.  Joint parameter estimation and demodulation of superimposed convolutional coded signals , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[18]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .