Spatial Statistical Downscaling for Constructing High-Resolution Nature Runs in Global Observing System Simulation Experiments

ABSTRACT Observing system simulation experiments (OSSEs) have been widely used as a rigorous and cost-effective way to guide development of new observing systems, and to evaluate the performance of new data assimilation algorithms. Nature runs (NRs), which are output from deterministic models, play an essential role in building OSSE systems for global atmospheric processes because they are used both to create synthetic observations at high spatial resolution, and to represent the “true” atmosphere against which the forecasts are verified. However, most NRs are generated at resolutions coarser than actual observations from satellite instruments or predictions from data assimilation algorithms. Our goal is to develop a principled statistical downscaling framework to construct high-resolution NRs via conditional simulation from coarse-resolution numerical model output. We use nonstationary spatial covariance function models that have basis function representations to capture spatial variability. This approach not only explicitly addresses the change-of-support problem, but also allows fast computation with large volumes of numerical model output. We also propose a data-driven algorithm to select the required basis functions adaptively, in order to increase the flexibility of our nonstationary covariance function models. In this article we demonstrate these techniques by downscaling a coarse-resolution physical numerical model output at a native resolution of of global surface concentrations to 655,362 equal-area hexagons.

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  Noel A Cressie,et al.  Global statistical analysis of MISR aerosol data: a massive data product from NASA's Terra satellite , 2007 .

[3]  Emily L. Kang,et al.  Visualizing massive spatial datasets using multi-resolution global grids , 2014 .

[4]  Jianhua Z. Huang,et al.  A full scale approximation of covariance functions for large spatial data sets , 2012 .

[5]  Peter Guttorp,et al.  Regional climate model assessment using statistical upscaling and downscaling techniques , 2012 .

[6]  A. Michalak,et al.  Characterizing attribute distributions in water sediments by geostatistical downscaling. , 2009, Environmental science & technology.

[7]  Ted Chang,et al.  Introduction to Geostatistics: Applications in Hydrogeology , 2001, Technometrics.

[8]  Jo Eidsvik,et al.  Estimation and Prediction in Spatial Models With Block Composite Likelihoods , 2014 .

[9]  Ch. Roland,et al.  Acceleration schemes with application to the EM algorithm , 2007, Comput. Stat. Data Anal..

[10]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[11]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[12]  Daniel J. Jacob,et al.  Modeling of Atmospheric Chemistry , 2017 .

[13]  S. R. Searle,et al.  On Deriving the Inverse of a Sum of Matrices , 1981 .

[14]  A. Turner,et al.  The BErkeley Atmospheric CO 2 Observation Network: initial evaluation , 2016 .

[15]  A. Segers,et al.  Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts , 2016 .

[16]  Jeffrey L. Anderson,et al.  Assimilation of satellite NO 2 observations at high spatial resolution using OSSEs , 2017 .

[17]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[18]  J. Schwartz,et al.  Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements , 2011 .

[19]  Montserrat Fuentes,et al.  Model Evaluation and Spatial Interpolation by Bayesian Combination of Observations with Outputs from Numerical Models , 2005, Biometrics.

[20]  P. Rayner,et al.  Sensitivity of simulated CO2 concentration to regridding of global fossil fuel CO2 emissions , 2014 .

[21]  Matthias Katzfuss,et al.  A Multi-Resolution Approximation for Massive Spatial Datasets , 2015, 1507.04789.

[22]  D. Randall,et al.  Moist synoptic transport of CO2 along the mid‐latitude storm track , 2011 .

[23]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[24]  J. Elliott,et al.  Evaluating the utility of dynamical downscaling in agricultural impacts projections , 2014, Proceedings of the National Academy of Sciences.

[25]  Henk Eskes,et al.  Assimilation of GOME total‐ozone satellite observations in a three‐dimensional tracer‐transport model , 2003 .

[26]  Y. LindaJ. Combining Incompatible Spatial Data , 2003 .

[27]  Noel Cressie,et al.  Spatio-Temporal Data Fusion for Very Large Remote Sensing Datasets , 2014, Technometrics.

[28]  P. Kitanidis Introduction to Geostatistics: Applications in Hydrogeology , 1997 .

[29]  Noel Cressie,et al.  Spatial data compression via adaptive dispersion clustering , 2018, Comput. Stat. Data Anal..

[30]  J. Dudhia,et al.  A Comparison of Statistical and Dynamical Downscaling of Winter Precipitation over Complex Terrain , 2011 .

[31]  R. Varadhan,et al.  Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm , 2008 .

[32]  Emily L. Kang,et al.  Spatial data fusion for large non‐Gaussian remote sensing datasets , 2017 .

[33]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[34]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[35]  Steven Pawson,et al.  Global CO2 transport simulations using meteorological data from the NASA data assimilation system , 2004 .

[36]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[37]  Jingwen Zhou,et al.  Calibration of Numerical Model Output Using Nonparametric Spatial Density Functions , 2011 .

[38]  Jing Guo,et al.  Development and validation of observing‐system simulation experiments at NASA's Global Modeling and Assimilation Office , 2013 .

[39]  D. Nychka,et al.  A Multiresolution Gaussian Process Model for the Analysis of Large Spatial Datasets , 2015 .

[40]  D. Dey,et al.  A First Course in Linear Model Theory , 2001 .

[41]  Hilary Lyons,et al.  Spatial Aggregation and the Ecological Fallacy. , 2010, Chapman & Hall/CRC handbooks of modern statistical methods.

[42]  Robert Atlas,et al.  Observing System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction , 2015 .

[43]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[44]  Dorit Hammerling,et al.  Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO‐2 , 2012 .

[45]  Yu-Chieng Liou,et al.  Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments , 2014 .

[46]  Robert Atlas,et al.  Future Observing System Simulation Experiments , 2016 .

[47]  Peter M. Atkinson Geostatistical regularization in remote sensing , 2001 .

[48]  A. Gelfand,et al.  A bivariate space-time downscaler under space and time misalignment. , 2010, The annals of applied statistics.

[49]  Emily L. Kang,et al.  Fused Gaussian Process for Very Large Spatial Data , 2017, 1702.08797.

[50]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[51]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[52]  William F. Christensen,et al.  Nonstationary Gaussian Process Models Using Spatial Hierarchical Clustering from Finite Differences , 2017, Technometrics.

[53]  Matthias Katzfuss,et al.  Bayesian nonstationary spatial modeling for very large datasets , 2012, 1204.2098.

[54]  Peter M. Atkinson,et al.  Downscaling in remote sensing , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[55]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[56]  Noel A Cressie,et al.  Spatial prediction for massive datasets , 2006 .

[57]  S. Pawson,et al.  Global CO 2 transport simulations using meteorological data from the NASA data assimilation system , 2004 .

[58]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[59]  Merritt N. Deeter,et al.  A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere , 2009 .

[60]  Vineet Yadav,et al.  Mapping of satellite Earth observations using moving window block kriging , 2014 .

[61]  Noel A Cressie,et al.  Using temporal variability to improve spatial mapping with application to satellite data , 2010 .

[62]  Bani K. Mallick,et al.  Adaptive Bayesian Nonstationary Modeling for Large Spatial Datasets Using Covariance Approximations , 2014 .

[63]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[64]  Noel A Cressie,et al.  High-Resolution Digital Soil Mapping: Kriging for Very Large Datasets , 2010 .

[65]  Daniel W. Apley,et al.  Local Gaussian Process Approximation for Large Computer Experiments , 2013, 1303.0383.

[66]  Evgenia K. Akritas,et al.  Various proofs of Sylvester's (determinant) identity , 1996 .

[67]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[68]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[69]  Hsin-Cheng Huang,et al.  Resolution Adaptive Fixed Rank Kriging , 2018, Technometrics.

[70]  Howard H. Chang,et al.  A spectral method for spatial downscaling , 2014, Biometrics.

[71]  N. Cressie,et al.  Spatial Statistical Data Fusion for Remote Sensing Applications , 2012 .

[72]  Peter F. Craigmile,et al.  Hierarchical model building, fitting, and checking: a behind-the-scenes look at a bayesian analysis of arsenic exposure pathways , 2009 .

[73]  James B. Abshire,et al.  Simulation studies for a space-based CO2 lidar mission , 2010 .

[74]  K. Sahr,et al.  Geodesic Discrete Global Grid Systems , 2003 .

[75]  Kai-Kuang Ma,et al.  A survey on super-resolution imaging , 2011, Signal Image Video Process..

[76]  T. Wigley,et al.  Downscaling general circulation model output: a review of methods and limitations , 1997 .

[77]  Geert Lenderink,et al.  A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands , 2007 .

[78]  Andrew O. Finley,et al.  Improving the performance of predictive process modeling for large datasets , 2009, Comput. Stat. Data Anal..

[79]  Matthias Katzfuss,et al.  Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets , 2011 .

[80]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[81]  A. Cracknell Review article Synergy in remote sensing-what's in a pixel? , 1998 .

[82]  Qingxin Tang,et al.  A Robust Fixed Rank Kriging Method for Improving the Spatial Completeness and Accuracy of Satellite SST Products , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[83]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[84]  Emily L. Kang,et al.  Spatio‐Temporal data fusion for massive sea surface temperature data from MODIS and AMSR‐E instruments , 2018, Environmetrics.

[85]  Noel Cressie,et al.  Multivariate Spatial Data Fusion for Very Large Remote Sensing Datasets , 2017, Remote. Sens..

[86]  Noel Cressie,et al.  FRK: An R Package for Spatial and Spatio-Temporal Prediction with Large Datasets , 2017, J. Stat. Softw..

[87]  Yuhang Wang,et al.  Statistical correction and downscaling of chemical transport model ozone forecasts over Atlanta , 2008 .

[88]  V. Roshan Joseph,et al.  Composite Gaussian process models for emulating expensive functions , 2012, 1301.2503.

[89]  T. C. Haas,et al.  Kriging and automated variogram modeling within a moving window , 1990 .

[90]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[91]  William M. Putman,et al.  Cloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5) , 2011 .

[92]  Annmarie Eldering,et al.  Ozone air quality measurement requirements for a geostationary satellite mission , 2011 .

[93]  Sudipto Banerjee,et al.  Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets , 2014, Journal of the American Statistical Association.

[94]  H. Bondell,et al.  Joint Variable Selection for Fixed and Random Effects in Linear Mixed‐Effects Models , 2010, Biometrics.

[95]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .