Can one hear the dimension of a fractal?
暂无分享,去创建一个
[1] I. Good,et al. Fractals: Form, Chance and Dimension , 1978 .
[2] Guy Louchard,et al. Mouvement brownien et valeurs propres du laplacien , 1968 .
[3] H. Urakawa. Bounded domains which are isospectral but not congruent , 1982 .
[4] Dieter Gromes,et al. Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .
[5] M. Kac. Can One Hear the Shape of a Drum , 1966 .
[6] B. Simon. Functional integration and quantum physics , 1979 .
[7] R. Seeley,et al. A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3 , 1978 .
[8] A. G. Vitushkin,et al. The analytic capacity of sets in problems of approximation theory , 1967 .
[9] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[10] M. V. Berry,et al. Distribution of Modes in Fractal Resonators , 1979 .
[11] F. Brownell. Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space , 1957 .
[12] B. Øksendal. Null Sets for Measures Orthogonal to R(X) , 1972 .
[13] P. Bérard. Remarques sur la conjecture de Weyl , 1983 .
[14] Colin W. Clark,et al. The Asymptotic Distribution of Eigenvalues and Eigenfunctions for Elliptic Boundary Value Problems , 1967 .
[15] Sidney C. Port,et al. Brownian Motion and Classical Potential Theory , 1978 .
[16] V. Ya. Ivrii,et al. Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .
[17] Richard B. Melrose,et al. Weyl''s conjecture for manifolds with concave boundary , 1980 .