Can one hear the dimension of a fractal?

We consider the spectrum of the Laplacian in a bounded open domain of ℝn with a rough boundary (i.e. with possibly non-integer dimension) and we discuss a conjecture by M. V. Berry generalizing Weyl's conjecture. Then using ideas Mark Kac developed in his famous study of the drum, we give upper and lower bounds for the second term of the expansion of the partition function. The main thesis of the paper is to show that the relevant measure of the roughness of the boundary should be based on Minkowski dimensions and on Minkowski measures rather than on Haussdorff ones.

[1]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[2]  Guy Louchard,et al.  Mouvement brownien et valeurs propres du laplacien , 1968 .

[3]  H. Urakawa Bounded domains which are isospectral but not congruent , 1982 .

[4]  Dieter Gromes,et al.  Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .

[5]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[6]  B. Simon Functional integration and quantum physics , 1979 .

[7]  R. Seeley,et al.  A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3 , 1978 .

[8]  A. G. Vitushkin,et al.  The analytic capacity of sets in problems of approximation theory , 1967 .

[9]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[10]  M. V. Berry,et al.  Distribution of Modes in Fractal Resonators , 1979 .

[11]  F. Brownell Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space , 1957 .

[12]  B. Øksendal Null Sets for Measures Orthogonal to R(X) , 1972 .

[13]  P. Bérard Remarques sur la conjecture de Weyl , 1983 .

[14]  Colin W. Clark,et al.  The Asymptotic Distribution of Eigenvalues and Eigenfunctions for Elliptic Boundary Value Problems , 1967 .

[15]  Sidney C. Port,et al.  Brownian Motion and Classical Potential Theory , 1978 .

[16]  V. Ya. Ivrii,et al.  Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .

[17]  Richard B. Melrose,et al.  Weyl''s conjecture for manifolds with concave boundary , 1980 .