The under-determined version of the MFS: Taking more sources than collocation points

In this study we investigate the approximation of the solutions of certain elliptic boundary value problems by the Method of Fundamental Solutions (MFS). In particular, we study the case in which the number of singularities (sources) exceeds the number of boundary (collocation) points. Two algorithms are proposed for the calculation of optimal solutions. An efficient numerical algorithm for the Dirichlet problem for Laplace's equation in the disk is described. Numerical experiments for a variety of geometries in two and three dimensions are presented.

[1]  A. Bogomolny Fundamental Solutions Method for Elliptic Boundary Value Problems , 1985 .

[2]  P. Ramachandran Method of fundamental solutions: singular value decomposition analysis , 2002 .

[3]  Andreas Karageorghis,et al.  Numerical analysis of the MFS for certain harmonic problems , 2004 .

[4]  C. S. Chen,et al.  A new method of fundamental solutions applied to nonhomogeneous elliptic problems , 2005, Adv. Comput. Math..

[5]  Andreas Karageorghis,et al.  Some Aspects of the Method of Fundamental Solutions for Certain Harmonic Problems , 2002, J. Sci. Comput..

[6]  Graeme Fairweather,et al.  The method of fundamental solutions for scattering and radiation problems , 2003 .

[7]  M. Golberg Boundary integral methods : numerical and mathematical aspects , 1999 .

[8]  Andreas Karageorghis,et al.  A matrix decomposition MFS algorithm for axisymmetric potential problems , 2004 .

[9]  Yiorgos Sokratis Smyrlis,et al.  Mathematical foundation of the MFS for certain elliptic systems in linear elasticity , 2009, Numerische Mathematik.

[10]  R. Mathon,et al.  The Approximate Solution of Elliptic Boundary-Value Problems by Fundamental Solutions , 1977 .

[11]  Xin Li,et al.  Trefftz Methods for Time Dependent Partial Differential Equations , 2004 .

[12]  Andreas Karageorghis,et al.  A Matrix Decomposition MFS Algorithm for Problems in Hollow Axisymmetric Domains , 2006, J. Sci. Comput..

[13]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[14]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[15]  B. Malgrange Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution , 1956 .

[16]  J. Kolodziej,et al.  Review of application of boundary collocation methods in mechaniccs of continuous media , 1987 .

[17]  T. Cruse Boundary Element Analysis in Computational Fracture Mechanics , 1988 .

[18]  L. Ehrenpreis On the theory of kernels of Schwartz , 1956 .

[19]  Yiorgos Sokratis Smyrlis,et al.  Applicability and applications of the method of fundamental solutions , 2009, Math. Comput..

[20]  M. Golberg,et al.  Discrete projection methods for integral equations , 1996 .

[21]  Andreas Karageorghis,et al.  A Linear Least-Squares MFS for Certain Elliptic Problems , 2004, Numerical Algorithms.

[22]  Andreas Karageorghis,et al.  Efficient implementation of the MFS: The three scenarios , 2009 .

[23]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[24]  Masashi Katsurada,et al.  A mathematical study of the charge simulation method I , 1988 .

[25]  M. K. Maiti,et al.  Integral equation solutions for simply supported polygonal plates , 1974 .

[26]  Y. Smyrlis,et al.  The Method of Fundamental Solutions: A Weighted Least-Squares Approach , 2006 .

[27]  Graeme Fairweather,et al.  A matrix decomposition MFS algorithm for axisymmetric biharmonic problems , 2005, Adv. Comput. Math..