Information-decomposition-model-based missing value estimation for not missing at random dataset
暂无分享,去创建一个
Min Gan | Shigang Liu | Honghua Dai | H. Dai | Shigang Liu | M. Gan
[1] M. Kenward,et al. Informative Drop‐Out in Longitudinal Data Analysis , 1994 .
[2] R. Little,et al. Selection and pattern-mixture models , 2008 .
[3] Chengqi Zhang,et al. Semi-parametric optimization for missing data imputation , 2007, Applied Intelligence.
[4] Ao Li,et al. Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme , 2006, BMC Bioinformatics.
[5] Tariq Samad,et al. Imputation of Missing Data in Industrial Databases , 1999, Applied Intelligence.
[6] Graham R. Wood,et al. A multi-stage approach to clustering and imputation of gene expression profiles , 2007, Bioinform..
[7] Gene H. Golub,et al. Missing value estimation for DNA microarray gene expression data: local least squares imputation , 2005, Bioinform..
[8] Michael J Daniels,et al. A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times , 2008, Biometrics.
[9] Tianwei Yu,et al. Incorporating Nonlinear Relationships in Microarray Missing Value Imputation , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[10] Marina V. Fomina,et al. Problem of knowledge discovery in noisy databases , 2011, Int. J. Mach. Learn. Cybern..
[11] Cécile Proust-Lima,et al. The International Journal of Biostatistics Pattern Mixture Models and Latent Class Models for the Analysis of Multivariate Longitudinal Data with Informative Dropouts , 2011 .
[12] Adriana Pérez,et al. Use of the mean, hot deck and multiple imputation techniques to predict outcome in intensive care unit patients in Colombia , 2002, Statistics in medicine.
[13] Zili Zhang,et al. Missing Value Estimation for Mixed-Attribute Data Sets , 2011, IEEE Transactions on Knowledge and Data Engineering.
[14] Roderick J. A. Little,et al. Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .
[15] Judi Scheffer,et al. Dealing with Missing Data , 2020, The Big R‐Book.
[16] Hong Yan,et al. Autoregressive-Model-Based Missing Value Estimation for DNA Microarray Time Series Data , 2009, IEEE Transactions on Information Technology in Biomedicine.
[17] Shichao Zhang,et al. "Missing is useful": missing values in cost-sensitive decision trees , 2005, IEEE Transactions on Knowledge and Data Engineering.
[18] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[19] Peter Haider,et al. Learning from incomplete data with infinite imputations , 2008, ICML '08.
[20] Maoguo Gong,et al. Fuzzy clustering with non-local information for image segmentation , 2014, Int. J. Mach. Learn. Cybern..
[21] Leonardo Franco,et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem , 2010, Artif. Intell. Medicine.
[22] J. N. K. Rao,et al. Empirical likelihood-based inference under imputation for missing response data , 2002 .
[23] Christopher J. Merz,et al. UCI Repository of Machine Learning Databases , 1996 .
[24] Virendra P. Vishwakarma,et al. Illumination normalization using fuzzy filter in DCT domain for face recognition , 2013, International Journal of Machine Learning and Cybernetics.
[25] Miroslav Dudík,et al. Maximum Entropy Density Estimation with Generalized Regularization and an Application to Species Distribution Modeling , 2007, J. Mach. Learn. Res..
[26] D. Rubin,et al. Statistical Analysis with Missing Data. , 1989 .
[27] Roderick J. A. Little,et al. Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .
[28] Shin Ishii,et al. A Bayesian missing value estimation method for gene expression profile data , 2003, Bioinform..
[29] T. H. Bø,et al. LSimpute: accurate estimation of missing values in microarray data with least squares methods. , 2004, Nucleic acids research.
[30] Michael I. Jordan,et al. Mixture models for learning from incomplete data , 1997, COLT 1997.
[31] Huang Chong-fu,et al. Demonstration of benefit of information distribution for probability estimation , 2000 .
[32] G. Molenberghs,et al. A Latent‐Class Mixture Model for Incomplete Longitudinal Gaussian Data , 2008, Biometrics.
[33] Shichao Zhang,et al. Parimputation: From Imputation and Null-Imputation to Partially Imputation , 2008, IEEE Intell. Informatics Bull..
[34] M. Kenward. Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. , 1998, Statistics in medicine.
[35] D. Rubin. Multiple imputation for nonresponse in surveys , 1989 .
[36] Geert Molenberghs,et al. The nature of sensitivity in monotone missing not at random models , 2006, Comput. Stat. Data Anal..
[37] Chengqi Zhang,et al. GBKII: An Imputation Method for Missing Values , 2007, PAKDD.
[38] Chengqi Zhang,et al. POP algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases , 2009, Expert Syst. Appl..
[39] S. Albert Paul,et al. Shared-parameter models , 2008 .
[40] T. Schneider. Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .
[41] Russ B. Altman,et al. Missing value estimation methods for DNA microarrays , 2001, Bioinform..
[42] Foster J. Provost,et al. Handling Missing Values when Applying Classification Models , 2007, J. Mach. Learn. Res..
[43] B. Muthén,et al. Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial. , 2011, Psychological methods.
[44] Lotfi A. Zadeh,et al. Fuzzy Sets , 1996, Inf. Control..
[45] Joseph W Hogan,et al. Handling drop‐out in longitudinal studies , 2004, Statistics in medicine.
[46] Paola Sebastiani,et al. Learning Bayesian Networks from Incomplete Databases , 1997, UAI.
[47] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[48] Geert Molenberghs,et al. Selection models and pattern‐mixture models to analyse longitudinal quality of life data subject to drop‐out , 2002, Statistics in medicine.