Systematic Synthesis and Design of Ultralow Threshold 2:1 Parametric Frequency Dividers

A new method is discussed for the systematic synthesis, design, and performance optimization of single-ended varactor-based 2:1 parametric frequency dividers (PFDs) exhibiting an ultralow-power threshold (<inline-formula> <tex-math notation="LaTeX">${P_{\mathrm{ th}}}$ </tex-math></inline-formula>). For the first time, it is analytically shown that the <inline-formula> <tex-math notation="LaTeX">${P_{\mathrm{ th}}}$ </tex-math></inline-formula>-value exhibited by any PFD can be expressed as an explicit closed-form function of the different impedances forming its network. Such a unique and unexplored property permits reliance on linear models, during PFD design and performance optimization. The validity of our analytical model has been verified, in a commercial circuit simulator, through the time- and frequency-domain algorithms. To demonstrate the effectiveness of our new synthesis approach, we also report on a lumped prototype of a 200:100 MHz PFD, realized on a printed circuit board (PCB). Although inductors with quality factors lower than 50 were used, the PFD prototype exhibits a <inline-formula> <tex-math notation="LaTeX">${P_{\mathrm{ th}}}$ </tex-math></inline-formula>-value lower than −15 dBm. Such a <inline-formula> <tex-math notation="LaTeX">${P_{\mathrm{ th}}}$ </tex-math></inline-formula>-value is the lowest one ever reported for passive varactor-based PFDs operating in the same frequency range.

[1]  R. Melville,et al.  Simulation-assisted design and analysis of varactor-based frequency multipliers and dividers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[2]  L. Pantoli,et al.  Complete and Systematic Simulation Tools for Frequency Divider Design , 2008, IEEE Transactions on Microwave Theory and Techniques.

[3]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[4]  E. Weig,et al.  Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes. , 2016, Physical review letters.

[5]  John D. Adam,et al.  Mitigate the Interference: Nonlinear Frequency Selective Ferrite Devices , 2014, IEEE Microwave Magazine.

[6]  Tobias J Kippenberg,et al.  Stabilization of a linear nanomechanical oscillator to its thermodynamic limit , 2012, Nature Communications.

[7]  A. Ustinov,et al.  Multifunctional nonlinear magnonic devices for microwave signal processing , 2010 .

[8]  Hansuek Lee,et al.  Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. , 2012, Physical review letters.

[9]  A. Lo Schiavo,et al.  Analyzing the dynamic behavior of RF oscillators , 2002 .

[10]  P. Stevenson Optimized Perturbation Theory , 1981 .

[11]  Almudena Suarez,et al.  Analysis and design of autonomous microwave circuits , 2009 .

[12]  G. Piazza,et al.  Parametric filtering surpasses resonator noise in ALN contour-mode oscillators , 2014, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS).

[13]  W. Marsden I and J , 2012 .

[14]  Apostolos Georgiadis,et al.  Improving wireless power transmission efficiency using chaotic waveforms , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[15]  A. Alu,et al.  Magnetic-free, fully integrated, compact microwave circulator using angular-momentum biasing , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[16]  Eric J. Naglich,et al.  Frequency-Selective Limiters Utilizing Contiguous-Channel Double Multiplexer Topology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[17]  A. Suárez,et al.  New technique for the determination through commercial software of the stable-operation parameter ranges in nonlinear microwave circuits , 1998 .

[18]  Ehsan Afshari,et al.  Distributed Parametric Resonator: A Passive CMOS Frequency Divider , 2010, IEEE Journal of Solid-State Circuits.

[19]  Michael L Roukes,et al.  A nanoscale parametric feedback oscillator. , 2011, Nano letters.

[20]  D. Zanette,et al.  Frequency stabilization in nonlinear micromechanical oscillators , 2012, Nature Communications.

[21]  Tomas Milson,et al.  United States Patent ( 19 ) , 2017 .

[22]  Leonardo Pantoli,et al.  Conversion matrix extraction by commercial CAD software for the stability design of autonomous circuits , 2010 .

[23]  Ron Lifshitz,et al.  Passive phase noise cancellation scheme. , 2012, Physical review letters.

[24]  A. Suarez,et al.  Nonlinear analysis and design of frequency selective limiters based on parametric circuits , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[25]  Ron Lifshitz,et al.  Optimal operating points of oscillators using nonlinear resonators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Leonardo Pantoli,et al.  Stability analysis by conversion matrix and transient envelope simulations , 2010, 2010 Workshop on Integrated Nonlinear Microwave and Millimeter-Wave Circuits.

[27]  A. Suarez,et al.  Nonlinear optimization tools for the design of high-efficiency microwave oscillators , 2004, IEEE Microwave and Wireless Components Letters.

[28]  Silvia Hernández,et al.  Systematic Methodology for the Global Stability Analysis of Nonlinear Circuits , 2019, IEEE Transactions on Microwave Theory and Techniques.

[29]  Ron Lifshitz,et al.  Surpassing fundamental limits of oscillators using nonlinear resonators. , 2013, Physical review letters.

[30]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[32]  F. Moon Experiments on Chaotic Motions of a Forced Nonlinear Oscillator: Strange Attractors , 1980 .

[33]  M. Roukes,et al.  Phase synchronization of two anharmonic nanomechanical oscillators. , 2013, Physical review letters.

[34]  G. Piazza,et al.  Phase noise suppression through parametric filtering , 2017 .

[35]  Almudena Suarez,et al.  Stability Analysis of Nonlinear Microwave Circuits , 2003 .

[36]  I.C. Hunter,et al.  Microwave Parametric Frequency Dividers With Conversion Gain , 2007, IEEE Transactions on Microwave Theory and Techniques.

[37]  Sanggeun Jeon,et al.  Nonlinear Design Technique for High-Power Switching-Mode Oscillators , 2006, IEEE Transactions on Microwave Theory and Techniques.

[38]  Ahmed Kord,et al.  Radio Frequency Angular Momentum Biased Quasi-LTI Nonreciprocal Acoustic Filters , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[39]  P Ward,et al.  Oscillator phase noise: systematic construction of an analytical model encompassing nonlinearity , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Gianluca Piazza,et al.  Low phase-noise autonomous parametric oscillator based on a 226.7 MHz AlN contour-mode resonator , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[41]  I. Kovacic,et al.  The Duffing Equation: Nonlinear Oscillators and their Behaviour , 2011 .