Numerical Representations of the Incomplete Gamma Function of Complex-Valued Argument

Various approaches to the numerical representation of the incomplete Gamma function γ(m+1/2,z) for complex arguments z and non-negative small integer indices m are compared with respect to numerical fitness (accuracy and speed). We consider power series, Laurent series, classical numerical methods of sampling the basic integral representation, and others not yet covered by the literature. The most suitable scheme is the construction of Taylor expansions around nodes of a regular, fixed grid in the z-plane, which stores a static matrix of higher derivatives. This is the obvious extension to a procedure that is in common use for real-valued z.

[1]  Michel Dupuis,et al.  The Rys quadrature revisited: A novel formulation for the efficient computation of electron repulsion integrals over Gaussian functions , 2001 .

[2]  E. W. Barnes,et al.  The Asymptotic Expansion of Integral Functions Defined by Taylor's Series , 1906 .

[3]  E. M. Wright,et al.  The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  C. Chiarella,et al.  On the evaluation of integrals related to the error function , 1968 .

[5]  P. Wynn,et al.  On a device for computing the _{}(_{}) tranformation , 1956 .

[6]  Roland Lindh,et al.  The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two‐electron integral evaluation , 1991 .

[7]  R. Colle,et al.  A mixed basis set of plane waves and Hermite Gaussian functions. Analytic expressions of prototype integrals , 1987 .

[8]  R. Courant,et al.  Vorlesungen über Allgemeine Funktionentheorie und Elliptische Funktionen , 1925 .

[9]  D. J. Hughes,et al.  Gauss Weights and Ordinates for 1 0 f(x)x 2 dx , 1965 .

[10]  William B. Jones,et al.  On the computation of incomplete gamma functions in the complex domain , 1985 .

[11]  M. Abramowitz,et al.  Mathematical functions and their approximations , 1975 .

[12]  G. D. Byrne,et al.  Gaussian Quadratures for the Integrals ∞ 0 exp(-x 2 )f(x)dx and b 0 exp(-x 2 )f(x)dx , 1969 .

[13]  F. G. Tricomi,et al.  Asymptotische Eigenschaften der unvollständigen Gammafunktion , 1950 .

[14]  B. L. Shea Chi‐Squared and Incomplete Gamma Integral , 1988 .

[15]  Walter Gautschi,et al.  Efficient computation of the complex error function , 1970 .

[16]  Roy Takenaga On the evaluation of the incomplete gamma function , 1966 .

[17]  Petr Čársky,et al.  Incomplete GammaFm(x) Functions for Real Negative and Complex Arguments , 1998 .

[18]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[19]  N. Temme Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function , 1975 .

[20]  U. Nagashima,et al.  Numerical accuracy on Fm(z) for molecular integral calculations , 2002 .

[21]  Z. Maksić,et al.  Explicit Formulas for Molecular Integrals over Hermite–Gaussian Functions , 1968 .

[22]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[23]  Richard Barakat,et al.  Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials , 1961 .

[24]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[25]  Jet Wimp,et al.  Expansions of hypergeometric functions in hypergeometric functions , 1961 .

[26]  R. Paris A uniform asymptotic expansion for the incomplete gamma function , 2002, 1611.00548.

[27]  Michel Dupuis,et al.  Numerical integration using rys polynomials , 1976 .

[28]  P. Wynn,et al.  The rational approximation of functions which are formally defined by a power series expansion , 1960 .

[29]  P. Henrici,et al.  A continued fraction algorithm for the computation of higher transcendental functions in the complex plane , 1967 .

[30]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[31]  Otto Neall Strand A method for the computation of the error function of a complex variable , 1965 .

[32]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[33]  Walter Gautschi,et al.  Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions , 2002 .

[34]  R. Colle,et al.  Hermite Gaussian functions modulated by plane waves: a general basis set for bound and continuum states , 1988 .