Numerical Representations of the Incomplete Gamma Function of Complex-Valued Argument
暂无分享,去创建一个
[1] Michel Dupuis,et al. The Rys quadrature revisited: A novel formulation for the efficient computation of electron repulsion integrals over Gaussian functions , 2001 .
[2] E. W. Barnes,et al. The Asymptotic Expansion of Integral Functions Defined by Taylor's Series , 1906 .
[3] E. M. Wright,et al. The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[4] C. Chiarella,et al. On the evaluation of integrals related to the error function , 1968 .
[5] P. Wynn,et al. On a device for computing the _{}(_{}) tranformation , 1956 .
[6] Roland Lindh,et al. The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two‐electron integral evaluation , 1991 .
[7] R. Colle,et al. A mixed basis set of plane waves and Hermite Gaussian functions. Analytic expressions of prototype integrals , 1987 .
[8] R. Courant,et al. Vorlesungen über Allgemeine Funktionentheorie und Elliptische Funktionen , 1925 .
[9] D. J. Hughes,et al. Gauss Weights and Ordinates for 1 0 f(x)x 2 dx , 1965 .
[10] William B. Jones,et al. On the computation of incomplete gamma functions in the complex domain , 1985 .
[11] M. Abramowitz,et al. Mathematical functions and their approximations , 1975 .
[12] G. D. Byrne,et al. Gaussian Quadratures for the Integrals ∞ 0 exp(-x 2 )f(x)dx and b 0 exp(-x 2 )f(x)dx , 1969 .
[13] F. G. Tricomi,et al. Asymptotische Eigenschaften der unvollständigen Gammafunktion , 1950 .
[14] B. L. Shea. Chi‐Squared and Incomplete Gamma Integral , 1988 .
[15] Walter Gautschi,et al. Efficient computation of the complex error function , 1970 .
[16] Roy Takenaga. On the evaluation of the incomplete gamma function , 1966 .
[17] Petr Čársky,et al. Incomplete GammaFm(x) Functions for Real Negative and Complex Arguments , 1998 .
[18] Shigeru Obara,et al. Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .
[19] N. Temme. Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function , 1975 .
[20] U. Nagashima,et al. Numerical accuracy on Fm(z) for molecular integral calculations , 2002 .
[21] Z. Maksić,et al. Explicit Formulas for Molecular Integrals over Hermite–Gaussian Functions , 1968 .
[22] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[23] Richard Barakat,et al. Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials , 1961 .
[24] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[25] Jet Wimp,et al. Expansions of hypergeometric functions in hypergeometric functions , 1961 .
[26] R. Paris. A uniform asymptotic expansion for the incomplete gamma function , 2002, 1611.00548.
[27] Michel Dupuis,et al. Numerical integration using rys polynomials , 1976 .
[28] P. Wynn,et al. The rational approximation of functions which are formally defined by a power series expansion , 1960 .
[29] P. Henrici,et al. A continued fraction algorithm for the computation of higher transcendental functions in the complex plane , 1967 .
[30] E. Davidson,et al. One- and two-electron integrals over cartesian gaussian functions , 1978 .
[31] Otto Neall Strand. A method for the computation of the error function of a complex variable , 1965 .
[32] P. Wynn,et al. On a Device for Computing the e m (S n ) Transformation , 1956 .
[33] Walter Gautschi,et al. Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions , 2002 .
[34] R. Colle,et al. Hermite Gaussian functions modulated by plane waves: a general basis set for bound and continuum states , 1988 .