Selective ablation of Copper-Indium-Diselenide solar cells monitored by laser-induced breakdown spectroscopy and classification methods

[1]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[2]  J. D. Winefordner,et al.  Identification of Solid Materials by Correlation Analysis Using a Microscopic Laser-Induced Plasma Spectrometer , 1999 .

[3]  H. Eichler,et al.  Das Neue Physikalische Grundpraktikum , 2001 .

[4]  J. Meijer,et al.  Controlled Laser Cleaning of Artworks with Low Resolution LIBS and Linear Correlation Analysis , 2005 .

[5]  Reinhard Noll,et al.  Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy , 2005 .

[6]  M. Sentis,et al.  Selective ablation of thin films with short and ultrashort laser pulses , 2006 .

[7]  A. Yáñez,et al.  Improvements in depth‐profiling of thick samples by laser‐induced breakdown spectroscopy using linear correlation , 2006 .

[8]  Leon J. Radziemski,et al.  Handbook of Laser-Induced Breakdown Spectroscopy , 2006 .

[9]  M. Potin-Gautier,et al.  Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis , 2006, Analytical and bioanalytical chemistry.

[10]  S. Maurice,et al.  Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods , 2007 .

[11]  Bernd Rech,et al.  The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells , 2007 .

[12]  M. Sotelo-Lerma,et al.  Optical properties and layer microstructure of CdS films obtained from an ammonia-free chemical bath deposition process , 2007 .

[13]  Xingquan Zhu,et al.  Knowledge Discovery and Data Mining: Challenges and Realities , 2007 .

[14]  Corey M. Dunsky,et al.  Solid state laser applications in photovoltaics manufacturing , 2008, SPIE LASE.

[15]  A. Ramil,et al.  Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS) , 2008 .

[16]  David J. Hwang,et al.  Comparison of multilayer laser scribing of thin film solar cells with femto, pico, and nanosecond pulse durations , 2009, Optics + Photonics for Sustainable Energy.

[17]  Heather Booth,et al.  Laser Processing in Industrial Solar Module Manufacturing , 2010 .

[18]  Viktor Schütz,et al.  Laser Processing of Thin Films for Photovoltaic Applications , 2010 .

[19]  D. Diego-Vallejo Laser-induced Plasma Investigations during Material Processing , 2011 .

[20]  J. Palm,et al.  Towards Module Efficiencies of 16% with an Improved CIGSSe Device Design , 2011 .

[21]  J. O. Cáceres,et al.  Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks. , 2011, Talanta.

[22]  Reinhard Noll,et al.  Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications , 2012 .

[23]  Bernd Rech,et al.  Improving the electrical and optical properties of DC-sputtered ZnO:Al by thermal post deposition treatments , 2012 .

[24]  Paulius Gečys Scribing of Thin-Film Solar Cells with Picosecond and Femtosecond Lasers , 2012 .

[25]  H. Eichler,et al.  Picosecond Laser Induced Selective Removal of Functional Layers on CIGS Thin Film Solar Cells , 2013 .