Liquid Crystal Microlenses for Autostereoscopic Displays

Three-dimensional vision has acquired great importance in the audiovisual industry in the past ten years. Despite this, the first generation of autostereoscopic displays failed to generate enough consumer excitement. Some reasons are little 3D content and performance issues. For this reason, an exponential increase in three-dimensional vision research has occurred in the last few years. In this review, a study of the historical impact of the most important technologies has been performed. This study is carried out in terms of research manuscripts per year. The results reveal that research on spatial multiplexing technique is increasing considerably and today is the most studied. For this reason, the state of the art of this technique is presented. The use of microlenses seems to be the most successful method to obtain autostereoscopic vision. When they are fabricated with liquid crystal materials, extended capabilities are produced. Among the numerous techniques for manufacturing liquid crystal microlenses, this review covers the most viable designs for its use in autostereoscopic displays. For this reason, some of the most important topologies and their relation with autostereoscopic displays are presented. Finally, the challenges in some recent applications, such as portable devices, and the future of three-dimensional displays based on liquid crystal microlenses are outlined.

[1]  Yi-Pai Huang,et al.  Autostereoscopic 3D display with scanning Multi-Electrode driven liquid crystal (MeD-LC) Lens , 2010 .

[2]  Tigran Galstian,et al.  Optical lens with electrically variable focus using an optically hidden dielectric structure. , 2010, Optics express.

[3]  J. F. Algorri,et al.  An Autostereoscopic Device for Mobile Applications Based on a Liquid Crystal Microlens Array and an OLED Display , 2014, Journal of Display Technology.

[4]  H.-P.D. Shieh,et al.  3-D Mobile Display Based on MoirÉ-Free Dual Directional Backlight and Driving Scheme for Image Crosstalk Reduction , 2008, Journal of Display Technology.

[5]  Charles Wheatstone On some remarkable and hitherto unobserved phenomena of binocular vision. , 1962 .

[6]  W. Rollmann Notiz zur Stereoskopie , 1853 .

[7]  Martin G. H. Hiddink,et al.  Switchable lenticular based 2D/3D displays , 2007, Electronic Imaging.

[8]  N. Collings,et al.  A holographic projection system with an electrically tuning and continuously adjustable optical zoom. , 2012, Optics express.

[9]  Ismo Rakkolainen,et al.  A Survey of 3DTV Displays: Techniques and Technologies , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Elisabeth Rieper,et al.  FELIX 3D display: an interactive tool for volumetric imaging , 2002, IS&T/SPIE Electronic Imaging.

[11]  G. Love,et al.  Control optimization of spherical modal liquid crystal lenses. , 1999, Optics express.

[12]  T. Dekker,et al.  2D/3D switchable displays , 2006, SPIE OPTO.

[13]  Graham John Woodgate,et al.  A prototype 3D mobile phone equipped with a next-generation autostereoscopic display , 2007, Electronic Imaging.

[14]  Zhang Dayong,et al.  Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab , 2012 .

[15]  Neil A. Dodgson,et al.  Optical devices: 3D without the glasses , 2013, Nature.

[16]  Jonathan Mather 3D TV without glasses , 2011 .

[17]  Chi-Yen Huang,et al.  Coaxially bifocal liquid crystal lens with switchable optical aperture , 2015 .

[18]  Chi-Yen Huang,et al.  Polarization-insensitive liquid crystal microlens array with dual focal modes. , 2014, Optics express.

[19]  V. Patlan,et al.  Wavefront formation using modal liquid-crystal correctors , 2010 .

[20]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[21]  A. Travis Autostereoscopic 3-D display. , 1990, Applied optics.

[22]  D. S. Cleverly Creation of a Lens by Field Controlled Variation of the Index Of Refraction in a Liquid Crystal , 1982 .

[23]  Virginia Urruchi,et al.  Using an Analytical Model to Design Liquid Crystal Microlenses , 2014, IEEE Photonics Technology Letters.

[24]  Yi-Pai Huang,et al.  High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. , 2014, Optics express.

[25]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[26]  Herbert E. Ives,et al.  Parallax Panoramagrams Made with a Large Diameter Lens , 1930 .

[27]  Yoshinori Shimizu,et al.  Enlargement of viewing area of stereoscopic full-color LED display by use of a parallax barrier. , 2002, Applied optics.

[28]  S. Kowel,et al.  A liquid crystal adaptive lens , 1981 .

[29]  J. F. Algorri,et al.  Cylindrical Liquid Crystal Microlens Array With Rotary Optical Power and Tunable Focal Length , 2015, IEEE Electron Device Letters.

[30]  P. Hands,et al.  Liquid crystal multi-mode lenses and axicons based on electronic phase shift control. , 2007, Optics express.

[31]  Toshiaki Nose,et al.  Optical properties of a liquid crystal microlens , 1990, Marketplace for Industrial Lasers.

[32]  Dayong Zhang,et al.  Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab. , 2012, Applied optics.

[33]  J. F. Algorri,et al.  Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses. , 2013, The Review of scientific instruments.

[34]  N. Fraval,et al.  Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths. , 2010, Applied optics.

[35]  Dae-Sik Kim,et al.  Application of Pi-cells in time-multiplexed stereoscopic and autostereoscopic displays based on LCD panels , 2007, Electronic Imaging.

[36]  David R. Selviah,et al.  Variable focal length microlenses , 2000 .

[37]  Chia-Rong Sheu,et al.  Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals. , 2012, Optics express.

[38]  Alan Purvis,et al.  Electrically Controllable Liquid Crystal Fresnel Lens , 1989, Optics & Photonics.

[39]  Susumu Sato,et al.  Liquid-crystal lens with a focal length that is variable in a wide range. , 2004, Applied optics.

[40]  Gordon D. Love,et al.  Adaptive modally addressed liquid crystal lenses , 2004, SPIE Optics + Photonics.

[41]  Ko-Wei Chien,et al.  Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays. , 2006, Applied optics.

[42]  Bahram Javidi,et al.  Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. , 2013, Applied optics.

[43]  N. Bennis,et al.  Electrooptic Characterization of Tunable Cylindrical Liquid Crystal Lenses , 2012 .

[44]  Susumu Sato Liquid-Crystal Lens-Cells with Variable Focal Length , 1979 .

[45]  Susumu Sato,et al.  Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers. , 2004, Applied optics.

[46]  J. F. Algorri,et al.  Liquid Crystal Temperature Sensor Based on a Micrometric Structure and a Metallic Nanometric Layer , 2014, IEEE Electron Device Letters.

[47]  J. F. Algorri,et al.  Tunable liquid crystal cylindrical micro-optical array for aberration compensation. , 2015, Optics express.

[48]  Hakan Urey,et al.  State of the Art in Stereoscopic and Autostereoscopic Displays , 2011, Proceedings of the IEEE.

[49]  B. Javidi,et al.  Hexagonal liquid crystal lens array for 3D endoscopy. , 2015, Optics express.

[50]  Oliver Cossairt,et al.  Novel view sequential display based on DMD technology , 2004, IS&T/SPIE Electronic Imaging.

[51]  J. Patel,et al.  Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays. , 1991, Optics letters.

[52]  M. Uchida,et al.  Focus tuning by liquid crystal lens in imaging system. , 2012, Applied optics.

[53]  G. Love,et al.  Modal liquid crystal lenses , 2000 .

[54]  M. Dejule,et al.  Three-terminal adaptive nematic liquid-crystal lens device. , 1994, Optics letters.

[55]  A. Khakifirooz,et al.  UV-assisted nickel-induced crystallization of amorphous silicon , 2001 .

[56]  Marenori Kawamura,et al.  Liquid crystal lens with two divided and double circularly hole-patterned electrodes , 2010, 2010 International Symposium on Optomechatronic Technologies.

[57]  J. Harrold,et al.  Switchable 2 D / 3 D Display – Solid Phase Liquid Crystal Microlens Array , 2004 .

[58]  D. Luo,et al.  A negative-positive tunable liquid-crystal microlens array by printing. , 2009, Optics express.

[59]  Marcel P. Lucassen,et al.  Visual comfort of binocular and 3D displays , 2001, IS&T/SPIE Electronic Imaging.

[60]  Andrew E. Johnson,et al.  Advances in the Dynallax Solid-State Dynamic Parallax Barrier Autostereoscopic Visualization Display System , 2008, IEEE Transactions on Visualization and Computer Graphics.

[61]  Yi-Hsin Lin,et al.  A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system , 2013 .

[62]  Yan Li,et al.  Fast-response liquid-crystal lens for 3D displays , 2014, Photonics West - Optoelectronic Materials and Devices.

[63]  Shin-Tson Wu,et al.  Tunable-Focus Cylindrical Liquid Crystal Lenses , 2004 .

[64]  T. Nose,et al.  A liquid crystal microlens obtained with a non-uniform electric field , 1989 .

[65]  Shin-Tson Wu,et al.  Polarization independent adaptive microlens with a blue-phase liquid crystal. , 2011, Optics express.

[66]  Зварт Сибе Т. Де,et al.  Autostereoscopic image output device , 2009 .

[67]  Yi-Hsin Lin,et al.  A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses , 2012, Journal of Display Technology.

[68]  L. Onural,et al.  State of the Art in Holographic Displays: A Survey , 2010, Journal of Display Technology.

[69]  Peter Krebs,et al.  Optimizing Time-Multiplexing Auto-Stereoscopic Displays With a Genetic Algorithm , 2014, Journal of Display Technology.

[70]  N. Bennis,et al.  Lenticular arrays based on liquid crystals , 2012 .

[71]  Yi-Hsin Lin,et al.  Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. , 2013, Optics express.

[72]  Shin-Tson Wu,et al.  Adaptive liquid crystal lens with large focal length tunability. , 2006, Optics express.

[73]  Marenori Kawamura,et al.  Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes. , 2013, Optics express.

[74]  Shin-Tson Wu,et al.  Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk. , 2014, Applied optics.

[75]  Lin-Yao Liao,et al.  Adaptive Liquid Crystal Lens(LC-Lens) Array for 3D Display and Capturing , 2012 .

[76]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[77]  José Francisco Algorri,et al.  A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor , 2014, Sensors.

[78]  Brian Robertson,et al.  High quality micro liquid crystal phase lenses for full resolution image steering in auto-stereoscopic displays. , 2014, Optics express.

[79]  G. Love,et al.  Wave front control systems based on modal liquid crystal lenses , 2000 .

[80]  Yi-Hsin Lin,et al.  A Polarizer-Free Liquid Crystal Lens Exploiting an Embedded-Multilayered Structure , 2015, IEEE Photonics Technology Letters.

[81]  M. Mohiddon,et al.  Growth, optical, and electrical properties of silicon films produced by the metal-induced crystallization process , 2011 .