A simple error indicator for meshfree methods based on natural neighbors

The main aim of this paper is the development of a refinement procedure able to operate in the context of the constrained natural element method (C-NEM). The C-NEM was proposed by the authors in a former work [Yvonnet J, Ryckelynck D, Lorong P, Chinesta F. A new extension of the natural element method for non-convex and discontinuous domains: the constrained natural element method (C-NEM). Int J Numer Methods Eng 2004;60:1451–1474] and its main meshless features, that allow to describe large domain changes as well as to handle fixed or moving discontinuities, were analyzed in [Yvonnet J, Chinesta F, Lorong P, Rynckelynck D. The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces. Int J Thermal Sci 2005;44:559–569; Yvonnet J, Lorong P, Ryckelynck D, Chinesta F. Simulating dynamic thermo-elastoplasticity in large transformations with adaptive refinement in the natural element method: application to shear banding. Int J Forming Process 2005;8:347–363]. Sometimes, in order to improve the interpolation accuracy for describing boundary layers or an anisotropic behavior, new nodes must be added, removed or repositioned. The interpolation in the vast majority of meshless techniques is free of mesh quality requirement. Thus, introduction, elimination or repositioning of nodes is a trivial task, because no geometrical restrictions exist. In this way, nodes can be added without geometrical checks in the regions where the solution must be improved (identified by using an appropriate error indicator). For this purpose, in this paper an a posteriori error indicator will be proposed and tested in some linear elastostatic problems benchmarks involving different levels of difficulty (stress concentration, solution singularities, …) all of them with a known exact solution. The computational implementation of this error indicator is very simple, and when it is used in tandem with an efficient refinement procedure, which makes use of the meshless features of the C-NEM, provides an accurate adaptation procedure, specially appropriate in the C-NEM framework.

[1]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[2]  K. Bathe,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[3]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[4]  K. Bathe,et al.  The method of finite spheres with improved numerical integration , 2001 .

[5]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[6]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[7]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[8]  Jiun-Shyan Chen,et al.  Filters, reproducing kernel, and adaptive meshfree method , 2003 .

[9]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[10]  B. Moran,et al.  Stabilized conforming nodal integration in the natural‐element method , 2004 .

[11]  Elías Cueto,et al.  On the imposition of essential boundary conditions in natural neighbour Galerkin methods , 2003 .

[12]  R. A. Uras,et al.  Enrichment of the Finite Element Method With the Reproducing Kernel Particle Method , 1995 .

[13]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[14]  Ted Belytschko,et al.  On adaptivity and error criteria for meshfree methods , 1998 .

[15]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[16]  Elías Cueto,et al.  Numerical integration in Natural Neighbour Galerkin methods , 2004 .

[17]  Icíar Alfaro,et al.  Updated Lagrangian free surface flow simulations with natural neighbour Galerkin methods , 2004 .

[18]  Jiun-Shyan Chen,et al.  Adaptive Galerkin Particle Method , 2003 .

[19]  Ted Belytschko,et al.  An error estimate in the EFG method , 1998 .

[20]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[21]  F. Chinesta,et al.  A new extension of the natural element method for non‐convex and discontinuous problems: the constrained natural element method (C‐NEM) , 2004 .

[22]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method. Part I: stress recovery and a posteriori error estimation , 2004 .

[23]  K. Bathe,et al.  Coupling and enrichment schemes for finite element and finite sphere discretizations , 2005 .

[24]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[25]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[26]  I. Babuska,et al.  Adaptive approaches and reliability estimations in finite element analysis , 1979 .

[27]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[28]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[29]  Kokichi Sugihara,et al.  Improving continuity of Voronoi-based interpolation over Delaunay spheres , 2002, Comput. Geom..

[30]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Pierre Villon,et al.  Natural element approximations involving bubbles for treating mechanical models in incompressible media , 2006 .

[32]  Hui-Ping Wang,et al.  New boundary condition treatments in meshfree computation of contact problems , 2000 .

[33]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[34]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[35]  Philippe Lorong,et al.  The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces , 2005 .

[36]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method: Part II: adaptive refinement , 2004 .

[37]  Icíar Alfaro,et al.  Meshless methods with application to metal forming , 2006 .

[38]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[39]  O. C. Zienkiewicz,et al.  Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems , 1999 .