Noncommutative Residues, Dixmier's Trace, and Heat Trace Expansions on Manifolds with Boundary

For manifolds with boundary, we define an extension of Wodzicki's noncommutative residue to boundary value problems in Boutet de Monvel's calculus. We show that this residue can be recovered with the help of heat kernel expansions and explore its relation to Dixmier's trace.

[1]  G. Grubb,et al.  TRACE EXPANSIONS AND THE NONCOMMUTATIVE RESIDUE FOR MANIFOLDS WITH BOUNDARY , 2001, math/0106030.

[2]  E. Schrohe,et al.  Dixmier's trace for boundary value problems , 1998 .

[3]  M. Pflaum,et al.  Traces on algebras of parameter dependent pseudodifferential operators and the eta–invariant , 1998, math/9804136.

[4]  E. Schrohe Noncommutative Residues and Manifolds with Conical Singularities , 1997 .

[5]  M. Lesch On the Noncommutative Residue for Pseudodifferential Operators with log-Polyhomogeneous Symbols , 1997, dg-ga/9708010.

[6]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[7]  E. Schrohe Wodzicki’s Noncommutative Residue and Traces for Operator Algebras on Manifolds with Conicai Singularities , 1997 .

[8]  F. Golse,et al.  The Noncommutative Residue for Manifolds with Boundary , 1996 .

[9]  V. Nistor,et al.  Homology of pseudodifferential operators I. Manifolds with boundary , 1996, funct-an/9606005.

[10]  G. Grubb,et al.  Zeta and eta functions for Atiyah-Patodi-Singer operators , 1996 .

[11]  S. Gindikin,et al.  Functional Analysis on the Eve of the 21st Century Volume II , 1996 .

[12]  G. Grubb,et al.  Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems , 1995 .

[13]  W. Kalau,et al.  Gravity, non-commutative geometry and the Wodzicki residue , 1995 .

[14]  M. Kontsevich,et al.  Geometry of determinants of elliptic operators , 1994, hep-th/9406140.

[15]  F. Golse,et al.  Le résidu non commutatif pour les variétés à bord , 1995 .

[16]  D. Kastler The dirac operator and gravitation , 1995 .

[17]  James Lepowsky,et al.  Functional Analysis on the Eve of the 21st Century , 1995 .

[18]  R. Melrose The eta invariant and families of pseudodifferential operators , 1995 .

[19]  M. Kontsevich,et al.  Determinants of elliptic pseudo-differential operators , 1994, hep-th/9404046.

[20]  V. Guillemin Gauged Lagrangian Distributions , 1993 .

[21]  J. Gracia-Bond́ıa,et al.  Connes' noncommutative differential geometry and the standard model , 1993 .

[22]  V. Guillemin Residue Traces for Certain Algebras of Fourier Integral Operators , 1993 .

[23]  B. Khesin,et al.  A central extension of the algebra of pseudodifferential symbols , 1991 .

[24]  A. Radul Lie algebras of differential operators, their central extensions, and W-algebras , 1991 .

[25]  A. Connes,et al.  Mathematical Physics the Action Functional in Non-commutative Geometry , 2022 .

[26]  J. Brylinski,et al.  The homology of algebras of pseudo-differential symbols and the noncommutative residue , 1987 .

[27]  M. Wodzicki Noncommutative residue Chapter I. Fundamentals , 1987 .

[28]  Victor Guillemin,et al.  A New Proof of Weyl's Formula on the Asymptotic Distribution of Eigenvalues , 1985 .

[29]  B. Schulze,et al.  Index theory of elliptic boundary problems , 1982 .

[30]  Y. Manin Algebraic aspects of nonlinear differential equations , 1979 .

[31]  Mark Adler,et al.  On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .

[32]  I. Amemiya,et al.  Lie algebras of differential operators , 1975 .

[33]  L. B. D. Monvel Boundary problems for pseudo-differential operators , 1971 .

[34]  Robert T. Seeley,et al.  Complex powers of an elliptic operator , 1967 .

[35]  H. Weyl Ueber die asymptotische Verteilung der Eigenwerte , 1911 .