Comparison the capability of artificial neural network (ANN) and EOS for prediction of solid solubil

[1]  K. Johnston,et al.  Nonpolar co-solvents for solubility enhancement in supercritical fluid carbon dioxide , 1986 .

[2]  E. Marwil,et al.  Convergence Results for Schubert’s Method for Solving Sparse Nonlinear Equations , 1979 .

[3]  G. Thodos,et al.  Solubility of 1-hexadecanol and palmitic acid in supercritical carbon dioxide , 1988 .

[4]  D. Wong,et al.  Accurate equation of state predictions at high temperatures and pressures using the existing UNIFAC model , 1993 .

[5]  Feridun Esmaeilzadeh,et al.  Calculation of the solid solubilities in supercritical carbon dioxide using a new Gex mixing rule , 2009 .

[6]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[7]  S. Sandler,et al.  Vapor-liquid equilibria of some hydrogen + hydrocarbon systems with the Wong-Sandler mixing rule , 1994 .

[8]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[9]  J. Prausnitz,et al.  LOCAL COMPOSITIONS IN THERMODYNAMIC EXCESS FUNCTIONS FOR LIQUID MIXTURES , 1968 .

[10]  J. Kwiatkowski,et al.  An Experimental Method for Measuring Solubilities of Solids in Supercritical Fluids , 1984 .

[11]  Reza Eslamloueyan,et al.  Simulation of steam distillation process using neural networks , 2009 .

[12]  A. Teja,et al.  Solid–fluid equilibria in natural gas systems , 1998 .

[13]  David Shan-Hill Wong,et al.  Calculations of Solubilities of Aromatic Compounds in Supercritical Carbon Dioxide , 1992 .

[14]  Reza Eslamloueyan,et al.  Estimation of thermal conductivity of pure gases by using artificial neural networks , 2009 .

[15]  Sunwook Kim,et al.  Modeling Supercritical Mixtures: How Predictive Is It? , 1989 .

[16]  M. Trebble,et al.  Density Changes in Supercritical Solvent + Hydrocarbon Solute Binary Mixtures , 1999 .

[17]  Y. Arai,et al.  Solubilities of 2,6-and 2,7-dimethylnaphthalenes in supercritical carbon dioxide , 1993 .

[18]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[19]  R. Maciel Filho,et al.  Processing modelling development through artificial neural networks and hybrid models , 2000 .

[20]  N. Foster,et al.  Influence of matrix composition on the solubility of hydroxybenzoic acid isomers in supercritical carbon dioxide , 1996 .

[21]  Michael E. Paulaitis,et al.  Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide , 1980 .

[22]  Fuan‐Nan Tsai,et al.  Solubility of carbon dioxide in phenanthrene and in pyrene , 1992 .

[23]  Chongli Zhong,et al.  An EOS/GE type mixing rule for perturbed hard-sphere equation of state and its application to the calculation of solid solubility in supercritical carbon dioxide , 1997 .

[24]  David Shan-Hill Wong,et al.  A theoretically correct mixing rule for cubic equations of state , 1992 .

[25]  Hyung-Keun Lee,et al.  Solid solubilities of methoxyphenylacetic acid isomer compounds in supercritical carbon dioxide , 1994 .

[26]  C. Eckert,et al.  An analytical Carnahan‐Starling‐van der Waals model for solubility of hydrocarbon solids in supercritical fluids , 1981 .

[27]  Martin T. Hagan,et al.  Neural network design , 1995 .

[28]  Yan-Ping Chen,et al.  Solubilities of benzoin, propyl 4-hydroxybenzoate and mandelic acid in supercritical carbon dioxide , 2002 .

[29]  Gerald D. Holder,et al.  Solubility of anthracene and phenanthrene mixtures in supercritical carbon dioxide , 1987 .

[30]  T. W. Żerda,et al.  FTIR measurements of solubilities of anthracene in supercritical carbon dioxide , 1986 .

[31]  Peng Xu,et al.  Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system , 2007 .

[32]  D. R. Baughman,et al.  Neural Networks in Bioprocessing and Chemical Engineering , 1992 .

[33]  K. Bartle,et al.  Measurement of solubility in supercritical fluids using chromatographic retention: the solubility of fluorene, phenanthrene, and pyrene in carbon dioxide , 1990 .

[34]  Joan F. Brennecke,et al.  Phase equilibria for supercritical fluid process design , 1989 .

[35]  G. Mansoori,et al.  Quadratic mixing rules for equations of state: Origins and relationships to the virial expansion , 1993 .

[36]  Ashish Dwivedi,et al.  Potential applications of artificial neural networks to thermodynamics: vapor–liquid equilibrium predictions , 1999 .

[37]  A. Shamsi,et al.  Synthesis gas reactions over oxidized intermetallic compounds , 1983 .

[38]  K. Ohgaki,et al.  Solubilities of naphthalene and indole in supercritical fluids , 1988 .

[39]  Farzad Abdolahi,et al.  Comparison between neural network and mathematical modeling of supercritical CO2 extraction of black pepper essential oil , 2006 .

[40]  M. Huron,et al.  New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures☆ , 1979 .

[41]  W. Lyman Handbook of chemical property estimation methods , 1982 .

[42]  Aaron M. Scurto,et al.  Modeling of solid–supercritical fluid phase equilibria with a cubic equation of state—Gex model , 2001 .

[43]  K. Asadpour‐Zeynali,et al.  Solubility prediction of anthracene in binary and ternary solvents by artificial neural networks (ANNs) , 2004 .

[44]  George Thodos,et al.  Solubility of 1-octadecanol and stearic acid in supercritical carbon dioxide , 1989 .

[45]  J. Zupan,et al.  Neural networks: A new method for solving chemical problems or just a passing phase? , 1991 .

[46]  M. Kamali,et al.  Analytic, neural network, and hybrid modeling of supercritical extraction of α-pinene , 2008 .

[47]  Y. Arai,et al.  Solubilities of 2,5- and 2,6-xylenols in supercritical carbon dioxide , 1990 .

[48]  A. Cortesi,et al.  Modelling solubility of solids in supercritical fluids using fusion properties , 1999 .

[49]  C. Cooney,et al.  Measurement and model prediction of solubilities of pure fatty acids, pure triglycerides, and mixtures of triglycerides in supercritical carbon dioxide , 1988 .

[50]  R. Eslamloueyan,et al.  Using Artificial Neural Networks for Estimation of Thermal Conductivity of Binary Gaseous Mixtures , 2009 .

[51]  M. Mukhopadhyay,et al.  Solid solubilities in supercritical fluids from group contributions , 1990 .

[52]  Mamata Mukhopadhyay,et al.  Thermodynamic modeling for supercritical fluid process design , 1993 .

[53]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[54]  J. A. Lazzús Prediction of solid vapor pressures for organic and inorganic compounds using a neural network , 2009 .

[55]  I. Goodarznia,et al.  Supercritical Extraction of Phenanthrene in the Crossover Region , 2005 .

[56]  Estimation of solubilities in supercritical carbon dioxide: A correlation for the peng-robinson interaction parameters , 1992 .

[57]  Greger G. Andersson,et al.  Development of a generalized neural network , 2000 .

[58]  C. Eckert,et al.  Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment , 1982 .

[59]  D. Harrop,et al.  1009. Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols , 1960 .

[60]  Y. Arai,et al.  Solubilities of 3,4-xylenol and naphthalene + 2,5-xylenol in supercritical carbon dioxide at 35.degree.C , 1992 .

[61]  Neil R. Foster,et al.  Solubility of o-hydroxybenzoic acid in supercritical carbon dioxide , 1991 .