A finite axiomatisation of inductive-inductive definitions

Induction-induction is a priciple for mutually defining data types A : Set and B : A Set. Both A and B are defined inductively, and the constructors for A can refer to B and vice versa.

[1]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[2]  U. Norell,et al.  Towards a practical programming language based on dependent type theory , 2007 .

[3]  Peter Morris,et al.  A Universe of Strictly Positive Families , 2009, Int. J. Found. Comput. Sci..

[4]  Peter Morris,et al.  A Categorical Semantics for Inductive-Inductive Definitions , 2011, CALCO.

[5]  Peter Dybjer,et al.  A general formulation of simultaneous inductive-recursive definitions in type theory , 2000, Journal of Symbolic Logic.

[6]  Peter Dybjer,et al.  Induction-recursion and initial algebras , 2003, Ann. Pure Appl. Log..

[7]  Peter W. J. Morris,et al.  Constructing Universes for Generic Programming , 2007 .

[8]  Peter Aczel,et al.  An Introduction to Inductive Definitions , 1977 .

[9]  Peter Morris,et al.  Indexed Containers , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[10]  Peter Aczel,et al.  On Relating Type Theories and Set Theories , 1998, TYPES.

[11]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[12]  Nils Anders Danielsson A Formalisation of a Dependently Typed Language as an Inductive-Recursive Family , 2006, TYPES.

[13]  Lionel Elie Mamane,et al.  Surreal Numbers in Coq , 2004, TYPES.

[14]  Peter Dybjer,et al.  Inductive families , 2005, Formal Aspects of Computing.

[15]  Anton Setzer,et al.  Inductive-Inductive Definitions , 2010, CSL.

[16]  Christine Paulin-Mohring,et al.  Types for Proofs and Programs , 2008, Lecture Notes in Computer Science.

[17]  Peter Dybjer,et al.  Indexed induction-recursion , 2006, J. Log. Algebraic Methods Program..

[18]  Thorsten Altenkirch,et al.  Containers: Constructing strictly positive types , 2005, Theor. Comput. Sci..

[19]  James Chapman,et al.  Type Theory Should Eat Itself , 2008, LFMTP@LICS.

[20]  Peter Morris,et al.  The gentle art of levitation , 2010, ICFP '10.

[21]  Roland Carl Backhouse,et al.  Do-it-yourself type theory , 1989, Formal Aspects of Computing.

[22]  Costas S. Iliopoulos,et al.  Formal Aspects of Computing , 2013 .