11C-methionine positron emission tomography for target delineation of recurrent glioblastoma in re-irradiation planning.

[1]  T. Iuchi,et al.  Methionine Uptake and Required Radiation Dose to Control Glioblastoma. , 2015, International journal of radiation oncology, biology, physics.

[2]  Min Young Yoo,et al.  Prognostic Value of Metabolic Tumor Volume on 11C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma , 2015, Nuclear Medicine and Molecular Imaging.

[3]  M. Scorsetti,et al.  Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors , 2014, Tumori.

[4]  T. Tamiya,et al.  Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[5]  Adam P Dicker,et al.  Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[7]  Branislav Jeremic,et al.  L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. , 2005, International journal of radiation oncology, biology, physics.

[8]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[9]  Morand Piert,et al.  Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[10]  M. Mehta,et al.  Treatment of malignant gliomas: radiotherapy, chemotherapy and integration of new targeted agents , 2004, Expert review of neurotherapeutics.

[11]  H. P. Richter,et al.  Cranial Neuronavigation with Direct Integration of 11C Methionine Positron Emission Tomography (PET) Data – Results of a Pilot Study in 32 Surgical Cases , 2002, Acta Neurochirurgica.

[12]  M. Schwaiger,et al.  Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  W. Curran,et al.  A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma. , 1999, International journal of radiation oncology, biology, physics.

[14]  H. Herzog,et al.  3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  R. Laing,et al.  Hypofractionated stereotactic radiotherapy in the management of recurrent glioma. , 1997, International journal of radiation oncology, biology, physics.

[16]  R. Iwata,et al.  Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[17]  D. Nelson,et al.  Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. , 1993, Journal of the National Cancer Institute.

[18]  M. Bergström,et al.  Positron Emission Tomography Compared with Magnetic Resonance Imaging and Computed Tomography in Supratentorial Gliomas Using Multiple Stereotactic Biopsies as Reference , 1989, Acta radiologica.

[19]  M. Chamberlain,et al.  Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas , 1988, Neurology.

[20]  B A Kall,et al.  Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. , 1987, Mayo Clinic proceedings.

[21]  B A Kall,et al.  Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. , 1987, Journal of neurosurgery.

[22]  T Greitz,et al.  Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. , 1983, Journal of computer assisted tomography.

[23]  A. Carlisle GAPINGS OF AN OYSTER. , 1828 .

[24]  Masayuki Matsuo,et al.  Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. , 2012, International journal of radiation oncology, biology, physics.

[25]  V. Sturm,et al.  11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. , 1997, Stereotactic and functional neurosurgery.

[26]  M. Prados,et al.  Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. , 1994, International journal of radiation oncology, biology, physics.

[27]  F Shishido,et al.  Cerebral glioma: evaluation with methionine PET. , 1993, Radiology.

[28]  B. Fisher,et al.  Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. , 1992, International journal of radiation oncology, biology, physics.