The Power of Quantum Fourier Sampling
暂无分享,去创建一个
[1] Scott Aaronson,et al. A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] Scott Aaronson,et al. BQP and the polynomial hierarchy , 2009, STOC '10.
[3] Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..
[4] Scott Aaronson. A Counterexample to the Generalized Linial-Nisan Conjecture , 2010, Electron. Colloquium Comput. Complex..
[5] R. Jozsa,et al. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] A. C. Berry. The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .
[7] Keisuke Fujii,et al. On the hardness of classically simulating the one clean qubit model , 2013, Physical review letters.
[8] M. E. Muller,et al. A Note on the Generation of Random Normal Deviates , 1958 .
[9] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[10] Lance Fortnow,et al. Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..
[11] Emanuele Viola,et al. On beating the hybrid argument , 2012, ITCS '12.
[12] Gerard J. Milburn,et al. Efficient linear optics quantum computation , 2001, Quantum Inf. Comput..
[13] Richard J. Lipton,et al. New Directions In Testing , 1989, Distributed Computing And Cryptography.
[14] V. Vu,et al. On the permanent of random Bernoulli matrices , 2008 .
[15] David P. DiVincenzo,et al. Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..
[16] Scott Aaronson. The Equivalence of Sampling and Searching , 2013, Theory of Computing Systems.
[17] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[18] Ashley Montanaro,et al. Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.
[19] Bill Fefferman,et al. Pseudorandom generators and the BQP vs. PH problem , 2010, ArXiv.
[20] Dieter van Melkebeek,et al. Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses , 2002, SIAM J. Comput..
[21] Leonard M. Adleman,et al. Quantum Computability , 1997, SIAM J. Comput..
[22] Seinosuke Toda,et al. PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..
[23] Peter W. Shor,et al. Polynominal time algorithms for discrete logarithms and factoring on a quantum computer , 1994, ANTS.
[24] Scott Aaronson,et al. The computational complexity of linear optics , 2010, STOC '11.
[25] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.
[26] Stuart A. Kurtz,et al. Gap-Definable Counting Classes , 1994, J. Comput. Syst. Sci..
[27] A. Harrow,et al. Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.
[28] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[29] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[30] Donald E. Knuth,et al. The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .
[31] Michael A. Nielsen,et al. Quantum computing and polynomial equations over the finite field Z2 , 2005, Quantum Inf. Comput..
[32] Richard Jozsa,et al. Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..
[33] Dennis M. Healy,et al. Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..
[34] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[35] Larry J. Stockmeyer,et al. On Approximation Algorithms for #P , 1985, SIAM J. Comput..
[36] Gilles Brassard,et al. Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..
[37] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.