Charge-Transfer-Regulated Selective Solar Fuel Production in Aqueous Medium by a Tetrathiafulvalene-Based Redox-Active Metal–Organic Framework

[1]  M. Leung,et al.  Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO2 Photoreduction. , 2022, Journal of the American Chemical Society.

[2]  Jie Shao,et al.  A high-performance pseudocapacitive negatrode for lithium-ion capacitor based on a tetrathiafulvalene-cobalt metal–organic framework , 2022, Electrochimica Acta.

[3]  T. Maji,et al.  Visible Light Driven Photocatalytic CO2 Reduction to CO/CH4 using Metal-Organic 'Soft' Coordination Polymer Gel. , 2022, Angewandte Chemie.

[4]  M. Wasielewski,et al.  An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework , 2021, ACS Materials Letters.

[5]  Christopher G. Jones,et al.  Unraveling the Electrical and Magnetic Properties of Layered Conductive Metal−Organic Framework With Atomic Precision , 2021, Angewandte Chemie.

[6]  S. Chou,et al.  Conductive CuCo‐Based Bimetal Organic Framework for Efficient Hydrogen Evolution , 2021, Advanced materials.

[7]  R. Cao,et al.  Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO2. , 2021, Angewandte Chemie.

[8]  O. Terasaki,et al.  Tricycloquinazoline Based 2D Conductive Metal-Organic Frameworks as Promising Electrocatalysts for CO2 Reduction. , 2021, Angewandte Chemie.

[9]  R. Fischer,et al.  Charge-Transfer-Induced Electrical Conductivity in a Tetrathiafulvalene-Based Metal–Organic Framework , 2021 .

[10]  F. Dong,et al.  Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction , 2021, Nature communications.

[11]  Banglin Chen,et al.  Metal–Organic Frameworks for Photo/Electrocatalysis , 2021, Advanced Energy and Sustainability Research.

[12]  Ling Wu,et al.  Selective photocatalytic reduction CO2 to CH4 on ultrathin TiO2 nanosheet via coordination activation , 2021, Applied Catalysis B: Environmental.

[13]  L. Curtiss,et al.  2D Copper Tetrahydroxyquinone Conductive Metal–Organic Framework for Selective CO2 Electrocatalysis at Low Overpotentials , 2021, Advanced materials.

[14]  Weiyang Li,et al.  Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using Conductive Two-Dimensional Metallophthalocyanine Based Metal-Organic Frameworks. , 2020, Journal of the American Chemical Society.

[15]  T. Maji,et al.  Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel , 2020, Nature Communications.

[16]  R. Raja,et al.  Recent Advances in Photocatalytic CO2 Utilisation Over Multifunctional Metal–Organic Frameworks , 2020, Catalysts.

[17]  Tianfu Liu,et al.  Highly Selective CO2 Electroreduction to CH4 by in situ Generated Cu2O Single-Type Sites on Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bond. , 2020, Angewandte Chemie.

[18]  Chengyan Ge,et al.  Cobalt Metal-Organic Frameworks Incorporating Redox-Active Tetrathiafulvalene Ligand: Structures and Effect of LLCT within the MOF on Photoelectrochemical Properties. , 2020, Inorganic chemistry.

[19]  J. Zuo,et al.  Tuning Electrical- and Photo-Conductivity by Cation Exchange within a Redox-Active Tetrathiafulvalene-Based Metal-Organic Framework. , 2020, Angewandte Chemie.

[20]  Lilia S. Xie,et al.  Electrically Conductive Metal–Organic Frameworks , 2020, Chemical reviews.

[21]  S. Qiao,et al.  Atomic‐Level Reactive Sites for Semiconductor‐Based Photocatalytic CO2 Reduction , 2020, Advanced Energy Materials.

[22]  Xiaoliang Xu,et al.  Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers , 2019, Nature Energy.

[23]  Wei Chen,et al.  Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination , 2018, Applied Catalysis B: Environmental.

[24]  D. D’Alessandro,et al.  A spectroscopic and electrochemical investigation of a tetrathiafulvalene series of metal–organic frameworks , 2018, Polyhedron.

[25]  F. Dong,et al.  Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas , 2018, ACS Catalysis.

[26]  Rui Li,et al.  Metal–Organic‐Framework‐Based Catalysts for Photoreduction of CO2 , 2018, Advanced materials.

[27]  O. Yaghi,et al.  The role of reticular chemistry in the design of CO2 reduction catalysts , 2018, Nature Materials.

[28]  M. Jaroniec,et al.  Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities , 2018, Advanced materials.

[29]  O. Ishitani,et al.  Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes , 2017, Coordination Chemistry Reviews.

[30]  S. Marinescu,et al.  Electrocatalytic Metal-Organic Frameworks for Energy Applications. , 2017, ChemSusChem.

[31]  Jinghua Wu,et al.  CO2 Reduction: From the Electrochemical to Photochemical Approach , 2017, Advanced science.

[32]  D. D’Alessandro,et al.  Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives , 2017 .

[33]  Dennis Sheberla,et al.  Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2 , 2016, Nature Communications.

[34]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[35]  C. Kubiak,et al.  Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2 , 2015 .

[36]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[37]  O. Ishitani,et al.  Efficient Photocatalysts for CO2 Reduction. , 2015, Inorganic chemistry.

[38]  M. Mecklenburg,et al.  Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. , 2015, Journal of the American Chemical Society.

[39]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[40]  M. Dincǎ,et al.  High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[41]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[42]  Manos Mavrikakis,et al.  Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation , 2011 .

[43]  M. Bryce Recent progress on conducting organic charge-transfer salts , 1992 .

[44]  G. M. Smith,et al.  Bis-1,3-dithiolium chloride: an unusually stable organic radical cation , 1970 .