Solving equations and optimization problems with uncertainty

AbstractWe study the problem of detecting zeros of continuous functions that are known only up to an error bound, extending the theoretical work of Franek and Krčál (J ACM 62(4):26:1–26:19, 2015) with explicit algorithms and experiments with an implementation (https://bitbucket.org/robsatteam/rob-sat). Further, we show how to use the algorithm for approximating worst-case optima in optimization problems in which the feasible domain is defined by the zero set of a function $$f\colon X\rightarrow {\mathbbm{R}}^n$$f:X→Rn which is only known approximately. The algorithm first identifies a subdomain A where the function f is provably non-zero, a simplicial approximation $$f'\colon A\rightarrow S^{n-1}$$f′:A→Sn-1 of f/|f|, and then verifies non-extendability of $$f'$$f′ to X to certify a zero. Deciding extendability is based on computing the cohomological obstructions and their persistence. We describe an explicit algorithm for the primary and secondary obstruction, two stages of a sequence of algorithms with increasing complexity. Using elements and techniques of persistent homology, we quantify the persistence of these obstructions and hence of the robustness of zero. We provide experimental evidence that for random Gaussian fields, the primary obstruction—a much less computationally demanding test than the secondary obstruction—is typically sufficient for approximating robustness of zero.

[1]  Greg Friedman,et al.  An elementary illustrated introduction to simplicial sets , 2008, 0809.4221.

[2]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[3]  Jean Pierre Merlet Interval analysis and reliability in robotics , 2009 .

[4]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[5]  Frédéric Chazal,et al.  Computing the Robustness of Roots , 2010 .

[6]  Jirí Matousek,et al.  Computing All Maps into a Sphere , 2011, J. ACM.

[7]  Robert Kohl,et al.  An Introduction To Algebraic Topology , 2016 .

[8]  Ulrich Bauer,et al.  Phat - Persistent Homology Algorithms Toolbox , 2014, J. Symb. Comput..

[9]  Jerry L. Prince,et al.  Information Processing in Medical Imaging, 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5-10, 2009. Proceedings , 2009, IPMI.

[10]  Bruno Lang,et al.  Existence Tests for Solutions of Nonlinear Equations Using Borsuk's Theorem , 2005, SIAM J. Numer. Anal..

[11]  Jean-Daniel Boissonnat,et al.  The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, Algorithmica.

[12]  Luc Jaulin,et al.  Loop detection of mobile robots using interval analysis , 2013, Autom..

[13]  Herbert Edelsbrunner,et al.  Homology and Robustness of Level and Interlevel Sets , 2011, ArXiv.

[14]  M. Postnikov Lectures in algebraic topology , 1983 .

[15]  Arne Storjohann A fast+practical+deterministic algorithm for triangularizing integer matrices , 1996 .

[16]  Herbert Edelsbrunner,et al.  The Robustness of Level Sets , 2010, ESA.

[17]  Luc Jaulin,et al.  Kernel Characterization of an Interval Function , 2014, Math. Comput. Sci..

[18]  Luc Jaulin,et al.  Inner and Outer Approximations of Existentially Quantified Equality Constraints , 2006, CP.

[19]  Marek Krcál,et al.  Computation of Cubical Steenrod Squares , 2016, CTIC.

[20]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[21]  Jürgen Potthoff,et al.  Fast simulation of Gaussian random fields , 2011, Monte Carlo Methods Appl..

[22]  Claude-Pierre Jeannerod,et al.  Rank-profile revealing Gaussian elimination and the CUP matrix decomposition , 2011, J. Symb. Comput..

[23]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[24]  Paul S. Wang The Undecidability of the Existence of Zeros of Real Elementary Functions , 1974, JACM.

[25]  R. Ho Algebraic Topology , 2022 .

[26]  R. Baker Kearfott,et al.  Existence verification for singular and nonsmooth zeros of real nonlinear systems , 2003, Math. Comput..

[27]  Stefan Ratschan,et al.  Effective topological degree computation based on interval arithmetic , 2012, Math. Comput..

[28]  A. Dold Lectures on Algebraic Topology , 1972 .

[29]  Jean-Daniel Boissonnat,et al.  Computing persistent homology with various coefficient fields in a single pass , 2014, Journal of Applied and Computational Topology.

[30]  Chao Chen,et al.  Segmenting the Papillary Muscles and the Trabeculae from High Resolution Cardiac CT through Restoration of Topological Handles , 2013, IPMI.

[31]  Luk'avs Vokvr'inek,et al.  Decidability of the extension problem for maps into odd-dimensional spheres , 2014, 1401.3758.

[32]  Lukás Vokrínek Decidability of the Extension Problem for Maps into Odd-Dimensional Spheres , 2017, Discret. Comput. Geom..

[33]  R. Adler,et al.  Persistent homology for random fields and complexes , 2010, 1003.1001.

[34]  Peter Franek,et al.  Robust Satisfiability of Systems of Equations , 2014, SODA.

[35]  Jirí Matousek,et al.  Polynomial-Time Computation of Homotopy Groups and Postnikov Systems in Fixed Dimension , 2012, SIAM J. Comput..

[36]  Jean-Daniel Boissonnat,et al.  The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology , 2013, Algorithmica.

[37]  Mariette Yvinec,et al.  The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.

[38]  Jirí Matousek,et al.  Polynomial-Time Homology for Simplicial Eilenberg–MacLane Spaces , 2012, Found. Comput. Math..

[39]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[40]  Moo K. Chung,et al.  Persistence Diagrams of Cortical Surface Data , 2009, IPMI.

[41]  R. Adler The Geometry of Random Fields , 2009 .

[42]  Stefan Ratschan,et al.  Satisfiability of Systems of Equations of Real Analytic Functions Is Quasi-decidable , 2011, MFCS.

[43]  Samuel Eilenberg,et al.  On Products of Complexes , 1953 .

[44]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[45]  Stefan Ratschan,et al.  Quasi-decidability of a Fragment of the First-Order Theory of Real Numbers , 2013, Journal of Automated Reasoning.

[46]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[47]  V. Prasolov Elements of Homology Theory , 2007 .

[48]  Jirí Matousek,et al.  Extendability of Continuous Maps Is Undecidable , 2013, Discret. Comput. Geom..

[49]  N. Steenrod,et al.  Cohomology operations, and obstructions to extending continuous functions : colloquium lectures, August 1957 , 1972 .

[50]  Peter Franek,et al.  Persistence of Zero Sets , 2015 .

[51]  Greg Friedman Survey Article: An elementary illustrated introduction to simplicial sets , 2012 .

[52]  Luc Jaulin,et al.  Inner Approximation of the Range of Vector-Valued Functions , 2010, Reliab. Comput..

[53]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[54]  Peter Franek,et al.  On Computability and Triviality of Well Groups , 2015, Symposium on Computational Geometry.

[55]  Andreas Frommer,et al.  On the existence theorems of Kantorovich, Miranda and Borsuk. , 2004 .

[56]  Rocío González-Díaz,et al.  Simplification techniques for maps in simplicial topology , 2005, J. Symb. Comput..

[57]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[58]  N. Steenrod,et al.  Products of Cocycles and Extensions of Mappings , 1947 .