Multidomain Memristive Switching of Pt38Mn62/[Co/Ni]n Multilayers

We investigate the mechanism of analoglike switching of ${\mathrm{Pt}}_{38}{\mathrm{Mn}}_{62}$/[$\mathrm{Co}$/$\mathrm{Ni}$] multilayers induced by spin-orbit torques. X-ray photoemission microscopy performed during magnetization reversal driven by current pulses shows that sequential switching of reproducible domain patterns can be achieved. Switching proceeds by domain-wall displacement starting from the edges of blocked ferromagnetic domains, which do not switch for either direction of the current and represent up to 24% of the total ferromagnetic area. The antiferromagnetic ${\mathrm{Pt}}_{38}{\mathrm{Mn}}_{62}$ layer has a granular texture, with the majority of the domains being smaller than 100 nm, whereas the ferromagnetic domains in $\mathrm{Co}$/$\mathrm{Ni}$ are typically larger than 200 nm. The blocked domains and the granular distribution of exchange bias constrain the origin as well as the displacement of the domain walls, thus leading to highly reproducible switching patterns as a function of the applied current pulses. These measurements clarify the origin of the memristive behavior in antiferromagnet-ferromagnet structures and provide clues for further optimization of spin-orbit torque switching and memristivity in these systems.

[1]  G. Sala,et al.  Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions , 2020, Nature Nanotechnology.

[2]  G. Beach,et al.  Effects of transition metal spacers on spin-orbit torques, spin Hall magnetoresistance, and magnetic anisotropy of Pt/Co bilayers , 2019, Physical Review B.

[3]  H. Ohno,et al.  Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching , 2019, Advanced materials.

[4]  M. Klaui,et al.  Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au , 2019, Physical Review B.

[5]  P. Gambardella,et al.  Asymmetric velocity and tilt angle of domain walls induced by spin-orbit torques , 2018, Applied Physics Letters.

[6]  Hideo Ohno,et al.  Characterization of spin–orbit torque-controlled synapse device for artificial neural network applications , 2018, Japanese Journal of Applied Physics.

[7]  M. Stiles,et al.  Interface-Generated Spin Currents. , 2018, Physical review letters.

[8]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[9]  J. Wunderlich,et al.  Current polarity-dependent manipulation of antiferromagnetic domains , 2017, Nature Nanotechnology.

[10]  H. Ohno,et al.  Stack Structure Dependence of Magnetic Properties of PtMn/[Co/Ni] Films for Spin-Orbit Torque Switching Device , 2017, IEEE transactions on magnetics.

[11]  H. Ohno,et al.  Magnetization switching schemes for nanoscale three-terminal spintronics devices , 2017 .

[12]  Jörg Raabe,et al.  Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. , 2017, Nature nanotechnology.

[13]  M. Jourdan,et al.  Manipulation of antiferromagnetic domain distribution in Mn2Au by ultrahigh magnetic fields and by strain , 2017 .

[14]  Hideo Ohno,et al.  Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures , 2017 .

[15]  Abhijit Ghosh,et al.  Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd /Co /AlO x Layers , 2017, 1701.01843.

[16]  Kyung-Jin Lee,et al.  Emerging Three-Terminal Magnetic Memory Devices , 2016, Proceedings of the IEEE.

[17]  Plamen Stamenov,et al.  Spin-orbit torque switching without an external field using interlayer exchange coupling. , 2016, Nature nanotechnology.

[18]  Kang L. Wang,et al.  Effect of heavy metal layer thickness on spin-orbit torque and current-induced switching in Hf|CoFeB|MgO structures , 2016 .

[19]  S. Baek,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[20]  H. Ohno,et al.  A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. , 2016, Nature nanotechnology.

[21]  Hyunsoo Yang,et al.  Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures , 2016 .

[22]  D. Ralph,et al.  Strong spin Hall effect in the antiferromagnet PtMn , 2016, 1603.08068.

[23]  Stéphane Auffret,et al.  Spin-orbit torque magnetization switching controlled by geometry. , 2016, Nature nanotechnology.

[24]  B. Koopmans,et al.  Field-free magnetization reversal by spin-Hall effect and exchange bias , 2015, Nature Communications.

[25]  Kevin Garello,et al.  Ultra-Fast Perpendicular Spin–Orbit Torque MRAM , 2015, IEEE Transactions on Magnetics.

[26]  J. Pearson,et al.  All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects , 2015, 1508.07906.

[27]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[28]  J. Pearson,et al.  Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb , 2015 .

[29]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[30]  V. Tshitoyan,et al.  Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn , 2015, 1502.04570.

[31]  Wei Zhang,et al.  Spin Hall effects in metallic antiferromagnets. , 2014, Physical review letters.

[32]  Kang L. Wang,et al.  Current-driven perpendicular magnetization switching in Ta/CoFeB/(TaOx or MgO/TaOx) films with lateral structural asymmetry , 2014 .

[33]  J. Bokor,et al.  Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy , 2014, Proceedings of the National Academy of Sciences.

[34]  Kang L. Wang,et al.  Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation , 2014 .

[35]  Hjm Henk Swagten,et al.  Spin-Hall-assisted magnetic random access memory , 2014 .

[36]  Kevin Garello,et al.  Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction , 2013, 1310.8235.

[37]  S. Auffret,et al.  Ultrafast magnetization switching by spin-orbit torques , 2013, 1310.5586.

[38]  E. Bauer,et al.  Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: I. Dynamic observations , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[40]  M. Stiles,et al.  Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling , 2013, 1301.4513.

[41]  F. Freimuth,et al.  Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. , 2013, Nature nanotechnology.

[42]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[43]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[44]  H. Ohno,et al.  Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. , 2012, Nature materials.

[45]  Kevin Garello,et al.  Magnetization switching of an MgO/Co/Pt layer by in-plane current injection , 2012 .

[46]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[47]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[48]  L. Buda-Prejbeanu,et al.  Fast current-induced domain-wall motion controlled by the Rashba effect. , 2011, Nature materials.

[49]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[50]  F. Maccherozzi,et al.  Evidence for in-plane spin-flop orientation at the MnPt/Fe(100) interface revealed by x-ray magnetic linear dichroism , 2006 .

[51]  K. Srinivasan,et al.  Crystallographic aspects of L10 magnetic materials , 2005 .

[52]  A. Maesaka,et al.  Transmission electron microscopy analysis of crystallographic transition from fcc to fct on PtMn spin valves , 2000 .

[53]  W. B. Pearson,et al.  Equiatomic transition metal alloys of manganese IV. A neutron diffraction study of magnetic ordering in the PtMn phase , 1965 .

[54]  Yoshihiko Horio,et al.  Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation , 2016 .

[55]  Peter F. Ladwig,et al.  An investigation of phase transformation behavior in sputter-deposited PtMn thin films , 2006 .

[56]  Gryaznov,et al.  Equiatomic Transition Metal Alloys of Manganese . IV . A Neutron Diffraction Study of Magnetic Ordering in the PtMn Phase w , 2005 .