Transverse fatigue crack propagation behavior in equine cortical bone

[1]  S. Stover,et al.  Equine cortical bone exhibits rising R-curve fracture mechanics. , 2003, Journal of biomechanics.

[2]  S. Stover,et al.  Compliance calibration for fracture testing of equine cortical bone. , 2002, Journal of biomechanics.

[3]  T. McMahon,et al.  Creep contributes to the fatigue behavior of bovine trabecular bone. , 1998, Journal of biomechanical engineering.

[4]  D. Taylor.,et al.  Microcrack growth parameters for compact bone deduced from stiffness variations. , 1998, Journal of biomechanics.

[5]  J H Keyak,et al.  The distribution of material properties in the equine third metacarpal bone serves to enhance sagittal bending. , 1997, Journal of biomechanics.

[6]  D. Burr,et al.  Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[7]  V. A. Gibson,et al.  Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. , 1996, Journal of biomechanics.

[8]  S. Stover,et al.  Calcium buffering is required to maintain bone stiffness in saline solution. , 1996, Journal of biomechanics.

[9]  V. A. Gibson,et al.  In vitro fatigue behavior of the equine third metacarpus: Remodeling and microcrack damage analysis , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[10]  V. A. Gibson,et al.  Osteonal structure in the equine third metacarpus. , 1996, Bone.

[11]  V. A. Gibson,et al.  Fatigue behavior of the equine third metacarpus: Mechanical property analysis , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[12]  J H Keyak,et al.  Estimation of material properties in the equine metacarpus with use of quantitative computed tomography , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[13]  L. Lanyon,et al.  Mechanical implications of collagen fibre orientation in cortical bone of the equine radius , 1993, Anatomy and Embryology.

[14]  S. Stover,et al.  Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses. , 1992, Journal of anatomy.

[15]  C T Rubin,et al.  Characterizing bone strain distributions in vivo using three triple rosette strain gages. , 1992, Journal of biomechanics.

[16]  D Vashishth,et al.  Effect of groove on bone fracture toughness. , 1991, Journal of biomechanics.

[17]  V. Frankel,et al.  Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. , 1981, Acta orthopaedica Scandinavica.

[18]  K. Piekarski,et al.  Fracture of Bone , 1970 .

[19]  J. Nicholas THE ORTHOPAEDIC RESEARCH SOCIETY , 1963 .

[20]  C. Rumelhart,et al.  Evolution during growth of the mechanical properties of the cortical bone in equine cannon-bones. , 1996, Medical engineering & physics.

[21]  S. Suresh Fatigue of materials , 1991 .

[22]  J. A. Kapp,et al.  Improved Wide Range Expressions for Displacements and Inverse Displacements for Standard Fracture Toughness Specimens , 1991 .

[23]  D M Nunamaker,et al.  In vitro comparison of Thoroughbred and Standardbred racehorses with regard to local fatigue failure of the third metacarpal bone. , 1991, American journal of veterinary research.

[24]  D B Burr,et al.  Long-term fatigue behavior of compact bone at low strain magnitude and rate. , 1990, Bone.

[25]  E. Radin,et al.  Mechanical and morphological effects of strain rate on fatigue of compact bone. , 1989, Bone.

[26]  W. Bonfield,et al.  Orientation dependence of the fracture mechanics of cortical bone. , 1989, Journal of biomechanics.

[27]  R. Martin,et al.  The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. , 1989, Journal of biomechanics.

[28]  D B Burr,et al.  Composition of the cement line and its possible mechanical role as a local interface in human compact bone. , 1988, Journal of biomechanics.

[29]  E. Radin,et al.  Bone remodeling in response to in vivo fatigue microdamage. , 1985, Journal of biomechanics.