Discrete symmetries of unitary minimal conformal theories

[1]  C. Itzykson,et al.  Comments on the links between SU(3) modular invariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards , 1996, hep-th/9604104.

[2]  P. Pearce,et al.  Lattice realizations of unitary minimal modular invariant partition functions , 1995, hep-th/9503098.

[3]  T. Gannon Towards a classification of su(2)⊕...⊕su(2) modular invariant partition functions , 1994, hep-th/9402074.

[4]  T. Gannon,et al.  Remarks on Galois symmetry in rational conformal field theories , 1994 .

[5]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[6]  Nienhuis,et al.  New construction of solvable lattice models including an Ising model in a field. , 1992, Physical review letters.

[7]  P. Roche On the construction of integrable dilute ADE models , 1992, hep-th/9204036.

[8]  N. Aoki Simple Factors of the Jacobian of a Fermat Curve and the Picard Number of a Product of Fermat Curves , 1991 .

[9]  J. Goeree,et al.  Markov traces and II1 factors in conformal field theory , 1991 .

[10]  U. Grimm,et al.  The XXZ Heisenberg chain, conformal invariance and the operator content of c < 1 systems , 1989 .

[11]  V. Kac,et al.  Modular and conformal invariance constraints in representation theory of affine algebras , 1988 .

[12]  Akishi Kato Classification of Modular Invariant Partition Functions in Two Dimensions , 1987 .

[13]  C. Itzykson,et al.  The A-D-E classification of minimal andA1(1) conformal invariant theories , 1987 .

[14]  J. Zuber Discrete Symmetries of Conformal Theories , 1986 .

[15]  Alexander B. Zamolodchikov,et al.  Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .

[16]  George E. Andrews,et al.  Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities , 1984 .

[17]  D. Huse Exact exponents for infinitely many new multicritical points , 1984 .