Impact of porous Mn3O4 nanostructures on the performance of rechargeable lithium ion battery: Excellent capacity and cyclability

[1]  Timothy G. Townsend,et al.  A review on the growing concern and potential management strategies of waste lithium-ion batteries , 2018 .

[2]  M. Kunduraci,et al.  Improved lithium-ion battery anode performance via multiple element approach , 2018 .

[3]  O. Hussain,et al.  Reduced graphene oxide/Mn3O4 nanocomposite electrodes with enhanced electrochemical performance for energy storage applications , 2017 .

[4]  Yun Zhao,et al.  One-step microwave preparation of a Mn3O4 nanoparticles/exfoliated graphite composite as superior anode materials for Li-ion batteries , 2017 .

[5]  M. S. Akhtar,et al.  Low temperature solution processed Mn3O4 nanoparticles: Enhanced performance of electrochemical supercapacitors , 2017 .

[6]  Zhe Zhang,et al.  Room-temperature synthesis of ultrathin Mn3O4 nanosheets as anode materials for lithium-ion batteries , 2016 .

[7]  Baohua Li,et al.  Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries. , 2016, ACS nano.

[8]  Yuanzhe Piao,et al.  Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery , 2016 .

[9]  J. Yue,et al.  General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes , 2015 .

[10]  V. Dhanak,et al.  Charge storage mechanism of activated manganese oxide composites for pseudocapacitors , 2015 .

[11]  B. Su,et al.  Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG) , 2015 .

[12]  Xiaobo Ji,et al.  Electrochemically Alternating Voltage Induced Mn3O4/Graphite Powder Composite with Enhanced Electrochemical Performances for Lithium-ion Batteries , 2015 .

[13]  Jiaqiang Xu,et al.  Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries. , 2014, ACS applied materials & interfaces.

[14]  P. Bogdanoff,et al.  Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water , 2014 .

[15]  Alok Kumar Rai,et al.  High Rate Capability and Long Cycle Stability of Co3O4/CoFe2O4 Nanocomposite as an Anode Material for High-Performance Secondary Lithium Ion Batteries , 2014 .

[16]  Delphine Riu,et al.  A review on lithium-ion battery ageing mechanisms and estimations for automotive applications , 2013 .

[17]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[18]  Junming Guo,et al.  Recent Progress in Metal Oxide Based Materials as Anode Materials for Lithium- Ion Batteries , 2013 .

[19]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[20]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[21]  Deren Yang,et al.  Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries , 2013 .

[22]  Yang‐Kook Sun,et al.  Highly reversible conversion-capacity of MnOx-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes , 2012 .

[23]  Lixia Yuan,et al.  Mn3O4 nanocrystals anchored on multi-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries , 2012 .

[24]  Qihua Wang,et al.  Facile Synthesis of Porous Mn3O4 Nano­crystal–Graphene Nanocomposites for Electrochemical Supercapacitors , 2012 .

[25]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[26]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[27]  Michael A. Lowe,et al.  Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries , 2011 .

[28]  Wei Jiang,et al.  Controlled synthesis of Mn3O4 and MnCO3 in a solvothermal system , 2009 .

[29]  M. Grube,et al.  Raman and infrared spectromicroscopy of manganese oxides , 2009 .

[30]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[31]  G. An,et al.  Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors , 2008, Nanotechnology.

[32]  Haoshen Zhou,et al.  Nanomaterials for lithium ion batteries , 2006 .

[33]  Ying-Jie Zhu,et al.  Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study , 2006 .

[34]  M. Whittingham,et al.  The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of γ-MnOOH synthesized by hydrothermal , 2001 .

[35]  C. N. Reilley,et al.  Effect of argon ion bombardment on metal complexes and oxides studied by x-ray photoelectron spectroscopy , 1978 .

[36]  T. Yamanaka,et al.  Infrared absorption spectra and cation distributions in (Mn, Fe)3O4 , 1972 .