Sparse and efficient estimation for partial spline models with increasing dimension
暂无分享,去创建一个
[1] Guang Cheng,et al. Local and global asymptotic inference in smoothing spline models , 2012, 1212.6788.
[2] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[3] C. Mallows. More comments on C p , 1995 .
[4] Hua Liang,et al. Estimation in partially linear models and numerical comparisons , 2006, Comput. Stat. Data Anal..
[5] B. Ripley,et al. Semiparametric Regression: Preface , 2003 .
[6] C. L. Mallows. Some comments on C_p , 1973 .
[7] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[8] Runze Li,et al. Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.
[9] Jian Huang,et al. SCAD-penalized regression in high-dimensional partially linear models , 2009, 0903.5474.
[10] Chong Gu. Smoothing Spline Anova Models , 2002 .
[11] Jianqing Fan,et al. Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.
[12] Hao Helen Zhang,et al. ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.
[13] Hao Helen Zhang,et al. Adaptive Lasso for Cox's proportional hazards model , 2007 .
[14] P. Speckman. Kernel smoothing in partial linear models , 1988 .
[15] Jianqing Fan,et al. Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.
[16] Hansheng Wang,et al. Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .
[17] Jianqing Fan,et al. New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .
[18] Hansheng Wang,et al. Robust Regression Shrinkage and Consistent Variable Selection Via the LAD-Lasso , 2008 .
[19] Nancy E. Heckman,et al. Spline Smoothing in a Partly Linear Model , 1986 .
[20] Florentina Bunea. Consistent covariate selection and post model selection inference in semiparametric regression , 2004 .
[21] G. Wahba,et al. Rates of convergence of some estimators for a semiparametric model , 1988 .
[22] W Y Zhang,et al. Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .
[23] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[24] Chenlei Leng,et al. Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .
[25] Sara van de Geer,et al. Penalized quasi-likelihood estimation in partial linear models , 1997 .
[26] G. Wahba,et al. Some results on Tchebycheffian spline functions , 1971 .
[27] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[28] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[29] H. Akaike. Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .
[30] J. Horowitz,et al. Asymptotic properties of bridge estimators in sparse high-dimensional regression models , 2008, 0804.0693.
[31] Qi Li,et al. Efficient Estimation of Additive Partially Linear Models , 2000 .
[32] T. Stamey,et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. , 1989, The Journal of urology.
[33] Wolfgang Härdle,et al. Partially Linear Models , 2000 .
[34] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[35] Florentina Bunea,et al. Two‐stage model selection procedures in partially linear regression , 2004 .
[36] Hung Chen,et al. Convergence Rates for Parametric Components in a Partly Linear Model , 1988 .
[37] Jeffrey S. Morris,et al. Sure independence screening for ultrahigh dimensional feature space Discussion , 2008 .
[38] A. A. Weiss,et al. Semiparametric estimates of the relation between weather and electricity sales , 1986 .
[39] G. Wahba. Spline models for observational data , 1990 .
[40] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[41] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[42] L. Breiman. Better subset regression using the nonnegative garrote , 1995 .
[43] Daowen Zhang,et al. Automatic model selection for partially linear models , 2009, J. Multivar. Anal..
[44] Donald Hedeker,et al. Longitudinal Data Analysis , 2006 .
[45] P. Lachenbruch. Mathematical Statistics, 2nd Edition , 1972 .
[46] R. F.,et al. Mathematical Statistics , 1944, Nature.
[47] A. Seheult,et al. Analysis of Field Experiments by Least Squares Smoothing , 1985 .
[48] S. Portnoy. Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .
[49] Runze Li,et al. Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.
[50] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[51] C. Robert. Discussion of "Sure independence screening for ultra-high dimensional feature space" by Fan and Lv. , 2008 .
[52] J. Rice. Convergence rates for partially splined models , 1986 .
[53] Adonis Yatchew,et al. An elementary estimator of the partial linear model , 1997 .
[54] Tõnu Kollo,et al. Communications in Statistics-Simulation and Computation , 2015 .
[55] Cun-Hui Zhang,et al. Adaptive Lasso for sparse high-dimensional regression models , 2008 .