Sparse and efficient estimation for partial spline models with increasing dimension

We consider model selection and estimation for partial spline models and propose a new regularization method in the context of smoothing splines. The regularization method has a simple yet elegant form, consisting of roughness penalty on the nonparametric component and shrinkage penalty on the parametric components, which can achieve function smoothing and sparse estimation simultaneously. We establish the convergence rate and oracle properties of the estimator under weak regularity conditions. Remarkably, the estimated parametric components are sparse and efficient, and the nonparametric component can be estimated with the optimal rate. The procedure also has attractive computational properties. Using the representer theory of smoothing splines, we reformulate the objective function as a LASSO-type problem, enabling us to use the LARS algorithm to compute the solution path. We then extend the procedure to situations when the number of predictors increases with the sample size and investigate its asymptotic properties in that context. Finite-sample performance is illustrated by simulations.

[1]  Guang Cheng,et al.  Local and global asymptotic inference in smoothing spline models , 2012, 1212.6788.

[2]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[3]  C. Mallows More comments on C p , 1995 .

[4]  Hua Liang,et al.  Estimation in partially linear models and numerical comparisons , 2006, Comput. Stat. Data Anal..

[5]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[6]  C. L. Mallows Some comments on C_p , 1973 .

[7]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[8]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.

[9]  Jian Huang,et al.  SCAD-penalized regression in high-dimensional partially linear models , 2009, 0903.5474.

[10]  Chong Gu Smoothing Spline Anova Models , 2002 .

[11]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[12]  Hao Helen Zhang,et al.  ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.

[13]  Hao Helen Zhang,et al.  Adaptive Lasso for Cox's proportional hazards model , 2007 .

[14]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[15]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[16]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .

[17]  Jianqing Fan,et al.  New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .

[18]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Via the LAD-Lasso , 2008 .

[19]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[20]  Florentina Bunea Consistent covariate selection and post model selection inference in semiparametric regression , 2004 .

[21]  G. Wahba,et al.  Rates of convergence of some estimators for a semiparametric model , 1988 .

[22]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[23]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[24]  Chenlei Leng,et al.  Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .

[25]  Sara van de Geer,et al.  Penalized quasi-likelihood estimation in partial linear models , 1997 .

[26]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[27]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[28]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[29]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[30]  J. Horowitz,et al.  Asymptotic properties of bridge estimators in sparse high-dimensional regression models , 2008, 0804.0693.

[31]  Qi Li,et al.  Efficient Estimation of Additive Partially Linear Models , 2000 .

[32]  T. Stamey,et al.  Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. , 1989, The Journal of urology.

[33]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[34]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[35]  Florentina Bunea,et al.  Two‐stage model selection procedures in partially linear regression , 2004 .

[36]  Hung Chen,et al.  Convergence Rates for Parametric Components in a Partly Linear Model , 1988 .

[37]  Jeffrey S. Morris,et al.  Sure independence screening for ultrahigh dimensional feature space Discussion , 2008 .

[38]  A. A. Weiss,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[39]  G. Wahba Spline models for observational data , 1990 .

[40]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[41]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[42]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[43]  Daowen Zhang,et al.  Automatic model selection for partially linear models , 2009, J. Multivar. Anal..

[44]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[45]  P. Lachenbruch Mathematical Statistics, 2nd Edition , 1972 .

[46]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[47]  A. Seheult,et al.  Analysis of Field Experiments by Least Squares Smoothing , 1985 .

[48]  S. Portnoy Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .

[49]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[50]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[51]  C. Robert Discussion of "Sure independence screening for ultra-high dimensional feature space" by Fan and Lv. , 2008 .

[52]  J. Rice Convergence rates for partially splined models , 1986 .

[53]  Adonis Yatchew,et al.  An elementary estimator of the partial linear model , 1997 .

[54]  Tõnu Kollo,et al.  Communications in Statistics-Simulation and Computation , 2015 .

[55]  Cun-Hui Zhang,et al.  Adaptive Lasso for sparse high-dimensional regression models , 2008 .