Likelihood-based feature relevance for figure-ground segmentation in images and videos

We propose an efficient method for image/video figure-ground segmentation using feature relevance (FR) and active contours. Given a set of positive and negative examples of a specific foreground (an object of interest (OOI) in an image or a tracked objet in a video), we first learn the foreground distribution model and its characteristic features that best discriminate it from its contextual background. For this goal, an objective function based on feature likelihood ratio is proposed for supervised FR computation. FR is then incorporated in foreground segmentation of new images and videos using level sets and energy minimization. We show the effectiveness of our approach on several examples of image/video figure-ground segmentation.

[1]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[2]  Richard Szeliski,et al.  Computer Vision , 2010 .

[3]  Tao Wang,et al.  Constraint Based Region Matching for Image Retrieval , 2004, International Journal of Computer Vision.

[4]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[5]  David G. Stork,et al.  Pattern Classification , 1973 .

[6]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[7]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[8]  Anil K. Jain,et al.  Simultaneous feature selection and clustering using mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  J. Ghosh,et al.  An Introduction to Bayesian Analysis: Theory and Methods , 2006 .

[10]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Michal Irani,et al.  What Is a Good Image Segment? A Unified Approach to Segment Extraction , 2008, ECCV.

[12]  Shang-Hong Lai,et al.  Fusing generic objectness and visual saliency for salient object detection , 2011, 2011 International Conference on Computer Vision.

[13]  Jayanta K. Ghosh,et al.  An Introduction to Bayesian Analysis , 2006 .

[14]  Peter Grünwald,et al.  Invited review of the book Statistical and Inductive Inference by Minimum Message Length , 2006 .

[15]  Djemel Ziou,et al.  Automatic colour–texture image segmentation using active contours , 2007, Int. J. Comput. Math..

[16]  Ariel Shamir,et al.  Seam Carving for Content-Aware Image Resizing , 2007, ACM Trans. Graph..

[17]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Lena Gorelick,et al.  Interactive Segmentation with Super-Labels , 2011, EMMCVPR.

[19]  Shimon Ullman,et al.  Combined Top-Down/Bottom-Up Segmentation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  John W. Fisher,et al.  Submitted to Ieee Transactions on Image Processing a Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution , 2022 .

[21]  J.K. Aggarwal,et al.  Human activity analysis , 2011, ACM Comput. Surv..

[22]  Djemel Ziou,et al.  Globally adaptive region information for automatic color-texture image segmentation , 2007, Pattern Recognit. Lett..

[23]  Fei-Fei Li,et al.  Towards total scene understanding: Classification, annotation and segmentation in an automatic framework , 2009, CVPR.

[24]  C. S. Wallace,et al.  Statistical and Inductive Inference by Minimum Message Length (Information Science and Statistics) , 2005 .

[25]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[26]  Xiaofeng Ren,et al.  Figure-ground segmentation improves handled object recognition in egocentric video , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Frédéric Jurie,et al.  Latent mixture vocabularies for object categorization and segmentation , 2009, Image Vis. Comput..

[28]  Djemel Ziou,et al.  Using Feature Selection For Object Segmentation and Tracking , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[29]  Rong Jin,et al.  Distance Metric Learning: A Comprehensive Survey , 2006 .

[30]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[31]  Li Fei-Fei,et al.  Towards total scene understanding: Classification, annotation and segmentation in an automatic framework , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[33]  Hichem Sahbi,et al.  Context-Based Support Vector Machines for Interconnected Image Annotation , 2010, ACCV.

[34]  Yao Wang,et al.  Video Processing and Communications , 2001 .

[35]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[36]  Chu-Ren Huang,et al.  A Framework of Feature Selection Methods for Text Categorization , 2009, ACL.

[37]  Belén Melián-Batista,et al.  Solving feature subset selection problem by a Parallel Scatter Search , 2006, Eur. J. Oper. Res..

[38]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[40]  Katerina Fragkiadaki,et al.  Figure-Ground Image Segmentation Helps Weakly-Supervised Learning of Objects , 2010, ECCV.

[41]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[42]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[43]  Gang Hua,et al.  Iterative Local-Global Energy Minimization for Automatic Extraction of Objects of Interest , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Pedro F. Felzenszwalb Representation and detection of deformable shapes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[45]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  R. Zabih,et al.  Spatially coherent clustering using graph cuts , 2004, CVPR 2004.

[47]  Djemel Ziou,et al.  An approach for dynamic combination of region and boundary information in segmentation , 2008, 2008 19th International Conference on Pattern Recognition.

[48]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Mohand Saïd Allili,et al.  A Learning Probabilistic Approach for Object Segmentation , 2012, 2012 Ninth Conference on Computer and Robot Vision.