Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7.

[1]  S. Tsukamoto,et al.  Ceylonins G–I: spongian diterpenes from the marine sponge Spongia ceylonensis , 2017, Journal of Natural Medicines.

[2]  M. Bogyo,et al.  Activity‐based probes for the ubiquitin conjugation–deconjugation machinery: new chemistries, new tools, and new insights , 2017, The FEBS journal.

[3]  W. Gu,et al.  Synthesis and biological evaluation of thiazole derivatives as novel USP7 inhibitors. , 2017, Bioorganic & medicinal chemistry letters.

[4]  S. Tsukamoto,et al.  Ceylonins A-F, Spongian Diterpene Derivatives That Inhibit RANKL-Induced Formation of Multinuclear Osteoclasts, from the Marine Sponge Spongia ceylonensis. , 2017, Journal of natural products.

[5]  E. Altmann,et al.  Targeted inhibition of the COP9 signalosome for treatment of cancer , 2016, Nature Communications.

[6]  A. Califano,et al.  HAUSP deubiquitinated and stabilizes N-Myc in neuroblastoma , 2016, Nature Medicine.

[7]  S. Tsukamoto,et al.  Petroquinones: trimeric and dimeric xestoquinone derivatives isolated from the marine sponge Petrosia alfiani , 2016 .

[8]  B. Kessler,et al.  DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets , 2016, Front. Genet..

[9]  Kay Hofmann,et al.  MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes , 2016, Molecular cell.

[10]  Hua Wang,et al.  Expression of USP7 and MARCH7 Is Correlated with Poor Prognosis in Epithelial Ovarian Cancer. , 2016, The Tohoku journal of experimental medicine.

[11]  S. Pierrou,et al.  The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells , 2016, Scientific Reports.

[12]  Y. Shang,et al.  Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. , 2016, The Journal of clinical investigation.

[13]  I. Dikic,et al.  Bacteria-host relationship: ubiquitin ligases as weapons of invasion , 2016, Cell Research.

[14]  Y. Kee,et al.  Role of Deubiquitinating Enzymes in DNA Repair , 2015, Molecular and Cellular Biology.

[15]  S. Linder,et al.  Deubiquitinase inhibition as a cancer therapeutic strategy. , 2015, Pharmacology & therapeutics.

[16]  Yong Tae Kwon,et al.  Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies , 2015, Experimental & Molecular Medicine.

[17]  V. Tsui,et al.  Inhibiting the deubiquitinating enzymes (DUBs). , 2015, Journal of medicinal chemistry.

[18]  A. Mesecar,et al.  The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds , 2014, Antiviral Research.

[19]  A. Jadhav,et al.  Discovery of ML323 as a Novel Inhibitor of the USP1/UAF1 Deubiquitinase Complex , 2014 .

[20]  Satpal Virdee,et al.  Screening of DUB activity and specificity by MALDI-TOF mass spectrometry , 2014, Nature Communications.

[21]  B. Kessler Selective and reversible inhibitors of ubiquitin-specific protease 7: a patent evaluation (WO2013030218) , 2014, Expert opinion on therapeutic patents.

[22]  Nieves Peltzer,et al.  Ubiquitin in the immune system , 2013, EMBO reports.

[23]  H. Ovaa,et al.  Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. , 2013, Immunity.

[24]  D. Rigden,et al.  Deubiquitylases from genes to organism. , 2013, Physiological reviews.

[25]  H. Yokosawa,et al.  Spongiacidin C, a pyrrole alkaloid from the marine sponge Stylissa massa, functions as a USP7 inhibitor. , 2013, Bioorganic & medicinal chemistry letters.

[26]  Anindya Dutta,et al.  Deubiquitination of Tip60 by USP7 Determines the Activity of the p53-Dependent Apoptotic Pathway , 2013, Molecular and Cellular Biology.

[27]  A. Bode,et al.  USP8 Is a Novel Target for Overcoming Gefitinib Resistance in Lung Cancer , 2013, Clinical Cancer Research.

[28]  C. Niu,et al.  Expression of HAUSP in gliomas correlates with disease progression and survival of patients , 2013, Oncology reports.

[29]  D. Durocher,et al.  Regulation of DNA damage responses by ubiquitin and SUMO. , 2013, Molecular cell.

[30]  Parantu K. Shah,et al.  A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. , 2012, Cancer cell.

[31]  弗雷德里克·科兰德,et al.  Selective and reversible inhibitors of ubiquitin specific protease 7 , 2012 .

[32]  G. Petsko,et al.  The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). , 2012, Bioorganic & medicinal chemistry letters.

[33]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[34]  V. Battaglia,et al.  Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. , 2012, Chemistry & biology.

[35]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[36]  K. Haglund,et al.  The role of ubiquitylation in receptor endocytosis and endosomal sorting , 2012, Journal of Cell Science.

[37]  G. Dianov,et al.  Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. , 2011, Chemistry & biology.

[38]  T. Sixma,et al.  Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. , 2011, Molecular cell.

[39]  E. Kremmer,et al.  The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1 , 2011, Nucleic acids research.

[40]  S. Dent,et al.  The role of deubiquitinating enzymes in chromatin regulation , 2011, FEBS letters.

[41]  H. Leonhardt,et al.  Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1 , 2011, Journal of cellular biochemistry.

[42]  A. Ma,et al.  Ubiquitin makes its mark on immune regulation. , 2010, Immunity.

[43]  P. Cohen,et al.  Will the Ubiquitin System Furnish as Many Drug Targets as Protein Kinases? , 2010, Cell.

[44]  Yiqing Zhao,et al.  DNMT1 Stability Is Regulated by Proteins Coordinating Deubiquitination and Acetylation-Driven Ubiquitination , 2010, Science Signaling.

[45]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[46]  T. Ludwig,et al.  Inactivation of HAUSP in vivo modulates p53 function , 2010, Oncogene.

[47]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[48]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[49]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[50]  W. Gu,et al.  Suppression of cancer cell growth by promoting cyclin D1 degradation. , 2009, Molecular cell.

[51]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[52]  J. Rain,et al.  Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells , 2009, Molecular Cancer Therapeutics.

[53]  H. Ploegh,et al.  Ubiquitination, Ubiquitin-like Modifiers, and Deubiquitination in Viral Infection , 2009, Cell Host & Microbe.

[54]  Daniela Hoeller,et al.  Targeting the ubiquitin system in cancer therapy , 2009, Nature.

[55]  John R. Engen,et al.  Conformational disturbance in Abl kinase upon mutation and deregulation , 2009, Proceedings of the National Academy of Sciences.

[56]  Wentao Fu,et al.  A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication , 2008, Proceedings of the National Academy of Sciences.

[57]  John R Engen,et al.  High-speed and high-resolution UPLC separation at zero degrees Celsius. , 2008, Analytical chemistry.

[58]  D. Sterner,et al.  Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities , 2008, Protein science : a publication of the Protein Society.

[59]  Vikki M. Weake,et al.  Histone ubiquitination: triggering gene activity. , 2008, Molecular cell.

[60]  Claude C. Warzecha,et al.  The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. , 2008, Molecular cell.

[61]  H. Stunnenberg,et al.  A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. , 2008, Molecular cell.

[62]  T. Hunter The age of crosstalk: phosphorylation, ubiquitination, and beyond. , 2007, Molecular cell.

[63]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[64]  C. Brancolini,et al.  Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. , 2006, Cancer research.

[65]  Gabriel Pineda,et al.  Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. , 2006, Molecular cell.

[66]  S. Srinivasula,et al.  Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. , 2006, Nature cell biology.

[67]  T. Wales,et al.  Hydrogen exchange mass spectrometry for the analysis of protein dynamics. , 2006, Mass spectrometry reviews.

[68]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[69]  F. Karch,et al.  GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. , 2005, Molecular cell.

[70]  D. Fushman,et al.  Polyubiquitin chains: polymeric protein signals. , 2004, Current opinion in chemical biology.

[71]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[72]  B. Vogelstein,et al.  HAUSP is Required for p53 Destabilization , 2004, Cell cycle.

[73]  Carlo Rago,et al.  Tumour suppression: Disruption of HAUSP gene stabilizes p53 , 2004, Nature.

[74]  Muyang Li,et al.  A dynamic role of HAUSP in the p53-Mdm2 pathway. , 2004, Molecular cell.

[75]  Víctor Quesada,et al.  Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. , 2004, Biochemical and biophysical research communications.

[76]  Muyang Li,et al.  Mono- Versus Polyubiquitination: Differential Control of p53 Fate by Mdm2 , 2003, Science.

[77]  Richard Pazdur,et al.  Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. , 2003, The oncologist.

[78]  Aaron Ciechanover,et al.  The Ubiquitin Proteasome System in Neurodegenerative Diseases Sometimes the Chicken, Sometimes the Egg , 2003, Neuron.

[79]  Muyang Li,et al.  Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde , 2002, Cell.

[80]  Doriano Fabbro,et al.  Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. , 2002, Cancer cell.

[81]  J. Qin,et al.  Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization , 2002, Nature.

[82]  A. Ciechanover,et al.  Ubiquitin‐mediated proteolysis: biological regulation via destruction , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[83]  Chris Sander,et al.  MView: a web-compatible database search or multiple alignment viewer , 1998, Bioinform..

[84]  K D Wilkinson,et al.  Crystal structure of a deubiquitinating enzyme (human UCH‐L3) at 1.8 å resolution , 1997, The EMBO journal.

[85]  R. Everett,et al.  A novel ubiquitin‐specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein , 1997, The EMBO journal.

[86]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[87]  A Ciechanover,et al.  Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[88]  A Ciechanover,et al.  ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.