No-go theorems for ψ-epistemic models based on a continuity assumption.

The quantum state ψ is a mathematical object used to determine the probabilities of different outcomes when measuring a physical system. Its fundamental nature has been the subject of discussions since the inception of quantum theory. Is it ontic, that is, does it correspond to a real property of the physical system? Or is it epistemic, that is, does it merely represent our knowledge about the system? Assuming a natural continuity assumption and a weak separability assumption, we show here that epistemic interpretations of the quantum state are in contradiction with quantum theory. Our argument is different from the recent proof of Pusey, Barrett, and Rudolph and it already yields a nontrivial constraint on ψ-epistemic models using a single copy of the system in question.

[1]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[2]  Matthew F Pusey,et al.  Can different quantum state vectors correspond to the same physical state? An experimental test , 2012, 1211.0942.

[3]  V. A. JULIUS,et al.  On Time , 1877, Nature.

[4]  W. Rudin Real and complex analysis , 1968 .

[5]  S. Massar,et al.  Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits. , 2002, Physical review letters.

[6]  Aurelien Drezet Can quantum mechanics be considered as statistical? an analysis of the PBR theorem , 2012 .

[7]  Lucien Hardy,et al.  Quantum ontological excess baggage , 2004 .

[8]  O. Maroney How statistical are quantum states , 2012, 1207.6906.

[9]  Lucien Hardy,et al.  ARE QUANTUM STATES REAL , 2012, 1205.1439.

[10]  Matt Farr,et al.  Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics , 2015 .

[11]  P. Knight,et al.  Introductory quantum optics , 2004 .

[12]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[13]  O. Alibart,et al.  A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength , 2010 .

[14]  David Jennings,et al.  Distinct quantum states can be compatible with a single state of reality. , 2012, Physical review letters.

[15]  C. Fuchs,et al.  Conditions for compatibility of quantum-state assignments , 2002, quant-ph/0206110.

[16]  David Jennings,et al.  The quantum state can be interpreted statistically , 2012 .

[17]  N. Gisin,et al.  Automated 'plug & play' quantum key distribution , 1998, quant-ph/9812052.

[18]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[19]  V. Scarani,et al.  Fast and simple one-way quantum key distribution , 2005, quant-ph/0506097.

[20]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[21]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[22]  Nicolas Gisin,et al.  Bell-Type Test of Energy-Time Entangled Qutrits , 2004 .

[23]  C. Ross Found , 1869, The Dental register.

[24]  D. J. Miller Alternative experimental protocol to demonstrate the Pusey-Barrett-Rudolph theorem , 2013 .

[25]  Alberto Montina,et al.  State-space dimensionality in short-memory hidden-variable theories , 2010, 1008.4415.

[26]  Robert W. Spekkens,et al.  Einstein, Incompleteness, and the Epistemic View of Quantum States , 2007, 0706.2661.

[27]  Pieter Kok,et al.  Introduction to Optical Quantum Information Processing: Preface , 2010 .

[28]  Michael J. W. Hall,et al.  Generalisations of the recent Pusey-Barrett-Rudolph theorem for statistical models of quantum phenomena , 2011 .

[29]  T. Deguchi,et al.  International Journal of Modern Physics B, ❢c World Scientific Publishing Company , 2001 .

[30]  R. Spekkens Contextuality for preparations, transformations, and unsharp measurements , 2004, quant-ph/0406166.

[31]  Alberto Montina,et al.  Exponential complexity and ontological theories of quantum mechanics , 2007, 0711.4770.

[32]  G Pelletier-Lapointe And all that jazz. , 1980, L' Infirmiere canadienne.

[33]  Lev Vaidman,et al.  Measurement of the Schrödinger Wave of a Single Particle , 1993 .

[34]  N. Gisin,et al.  Continuous high speed coherent one-way quantum key distribution. , 2009, Optics express.

[35]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[36]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.