Drug discovery by dynamic combinatorial libraries

Dynamic combinatorial chemistry is a recently introduced supramolecular approach that uses self-assembly processes to generate libraries of chemical compounds. In contrast to the stepwise methodology of classical combinatorial techniques, dynamic combinatorial chemistry allows for the generation of libraries based on the continuous interconversion between the library constituents. Spontaneous assembly of the building blocks through reversible chemical reactions virtually encompasses all possible combinations, and allows the establishment of adaptive processes owing to the dynamic interchange of the library constituents. Addition of the target ligand or receptor creates a driving force that favours the formation of the best-binding constituent — a self-screening process that is capable, in principle, of accelerating the identification of lead compounds for drug discovery.

[1]  S. Rowan,et al.  Building thermodynamic combinatorial libraries of quinine macrocycles , 1997 .

[2]  M. Kisakürek,et al.  Essays in contemporary chemistry : from molecular structure towards biology , 2001 .

[3]  R. Queneau Cent Mille Milliards de poèmes , 1961 .

[4]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[5]  J. Morrow,et al.  Chloroform-soluble schiff-base Zn(II) or Cd(II) complexes from a dynamic combinatorial library. , 2001, Inorganic chemistry.

[6]  J. Sanders,et al.  Molecular amplification in a dynamic combinatorial library using non-covalent interactions , 2000 .

[7]  K. Yamaguchi,et al.  Dynamic assembly of coordination boxes from (en)Pd(II) unit and a rectangular panel-like ligand: NMR, CSI-MS, and X-ray studies. , 2001, Journal of the American Chemical Society.

[8]  J. Goodwin,et al.  Template-directed synthesis: use of a reversible reaction , 1992 .

[9]  A. Eliseev,et al.  Imine exchange in O-aryl and O-alkyl oximes as a base reaction for aqueous ‘dynamic’ combinatorial libraries. A kinetic and thermodynamic study , 1999 .

[10]  A. Eliseev,et al.  Use of Molecular Recognition To Drive Chemical Evolution. 1. Controlling the Composition of an Equilibrating Mixture of Simple Arginine Receptors , 1997 .

[11]  R. Fröhlich,et al.  AN EXPANSIBLE METALLA-CRYPTAND AS A COMPONENT OF A SUPRAMOLECULAR COMBINATORIAL LIBRARY FORMED FROM DI(8-HYDROXYQUINOLINE) LIGANDS AND GALLIUM(III) OR ZINC(II) IONS , 1999 .

[12]  Moore,et al.  "Masterpiece" copolymer sequences by targeted equilibrium-shifting , 2000, Organic letters.

[13]  J. Sanders,et al.  Identification and Isolation of a Receptor for N-Methyl Alkylammonium Salts: Molecular Amplification in a Pseudo-peptide Dynamic Combinatorial Library. , 2001, Angewandte Chemie.

[14]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[15]  J. Lehn,et al.  Dynamic Combinatorial Chemistry: Substrate H-Bonding Directed Assembly of Receptors Based on Bipyridine-Metal Complexes , 1999 .

[16]  J. F. Stoddart,et al.  Dynamic hemicarcerands and hemicarceplexes. , 2000, Organic letters.

[17]  B. Miller,et al.  Dynamic diversity and small-molecule evolution: a new paradigm for ligand identification. , 1999, Trends in biotechnology.

[18]  M. Fujita,et al.  Molecular Paneling via Coordination: Guest-Controlled Assembly of Open Cone and Tetrahedron Structures from Eight Metals and Four Ligands , 2000 .

[19]  J. Lehn,et al.  Self-Assembly of Tetra- and Hexanuclear Circular Helicates , 1997 .

[20]  M. Fujita,et al.  Guest-Selected Formation of Pd(II)-Linked Cages from a Prototypical Dynamic Library , 1999 .

[21]  R M Stroud,et al.  Episelection: novel Ki approximately nanomolar inhibitors of serine proteases selected by binding or chemistry on an enzyme surface. , 1995, Biochemistry.

[22]  S. Rowan,et al.  STRUCTURE-DIRECTED SYNTHESIS UNDER THERMODYNAMIC CONTROL : MACROCYCLIC TRIMERS FROM CINCHONA ALKALOIDS , 1996 .

[23]  Berl,et al.  Template-induced and molecular recognition directed hierarchical generation of supramolecular assemblies from molecular strands , 2000, Chemistry.

[24]  J. F. Stoddart,et al.  Supramolecular science : where it is and where it is going , 1998 .

[25]  S. Rowan,et al.  Automated recognition, sorting, and covalent self-assembly by predisposed building blocks in a mixture , 1997 .

[26]  D. Reinhoudt,et al.  Covalent capture of dynamic hydrogen-bonded assemblies , 2000 .

[27]  A. Star,et al.  Diazadioxadecalin and salen podands and macrocycles within dynamic combinatorial virtual libraries: structure, prototropy, complexation and enantioselective catalysis , 2001 .

[28]  G. Jung,et al.  Impact of mass spectrometry on combinatorial chemistry. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[29]  G. R. Cousins,et al.  Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. , 2000, Current opinion in chemical biology.

[30]  J. Lehn,et al.  In Situ Generation and Screening of a Dynamic Combinatorial Carbohydrate Library against Concanavalin A , 2000, Chembiochem : a European journal of chemical biology.

[31]  J. Lehn,et al.  Dynamic Deconvolution of a Pre‐Equilibrated Dynamic Combinatorial Library of Acetylcholinesterase Inhibitors , 2001, Chembiochem : a European journal of chemical biology.

[32]  J. Sanders,et al.  Reversible synthesis of π-associated [2]catenanes by ring-closing metathesis: towards dynamic combinatorial libraries of catenanes , 1998 .

[33]  A. Hopfinger,et al.  Nonspecific protease‐catalyzed hydrolysis/synthesis of a mixture of peptides: Product diversity and ligand amplification by a molecular trap , 1996, Biopolymers.

[34]  B. Miller,et al.  Selection of DNA-binding compounds via multistage molecular evolution , 1999 .

[35]  M. Drew,et al.  Metal-ion-controlled transamination in the synthesis of macrocyclic Schiff-base ligands. Part 1. Reactions of 2,6-diacetylpyridine and dicarbonyl compounds with 3,6-dioxaoctane-1,8-diamine , 1981 .

[36]  S. Nelson Binuclear complexes of macrocyclic schiff base ligands as hosts for small substrate molecules , 1982 .

[37]  Arasu Ganesan,et al.  Strategies for the Dynamic Integration of Combinatorial Synthesis and Screening. , 1998, Angewandte Chemie.

[38]  M. Hammond,et al.  Generation of novel DNA-binding compounds by selection and amplification from self-assembled combinatorial libraries , 1997 .

[39]  J. Lehn,et al.  Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. Reinhoudt,et al.  Guest-Templated Selection and Amplification of a Receptor by Noncovalent Combinatorial Synthesis. , 2000, Angewandte Chemie.

[41]  M. Albrecht,et al.  Template-Directed Self-Recognition of Alkyl-Bridged Bis(catechol) Ligands in the Formation of Helicate-Type Complexes. , 1999, Angewandte Chemie.

[42]  T. Ward,et al.  Libraries via Metathesis of Internal Olefins , 1998 .

[43]  H. Yun,et al.  GUEST-INDUCED REORGANIZATION OF A SELF-ASSEMBLED PD(II) COMPLEX , 1998 .

[44]  J. Lehn,et al.  Self‐Assembly of a Circular Double Helicate , 1996 .

[45]  J. Rebek,et al.  Diversity and Selection in Self-Assembled Tetrameric Capsules , 2000 .

[46]  J. Lehn,et al.  Adaptive self-assembly: environment-induced formation and reversible switching of polynuclear metallocyclophanes. , 2000, Chemistry.

[47]  K. Rissanen,et al.  Generation of an equilibrating collection of circular inorganiccopper(i) architectures and solid-state stabilisation of the dicopperhelicate component , 1997 .

[48]  W. Clark Still,et al.  Chemical Evolution: A Model System That Selects and Amplifies a Receptor for the Tripeptide (d)Pro(l)Val(d)Val , 1998 .

[49]  P. Hodge,et al.  Synthesis of soluble combinatorial libraries of crown ether-ester analogues via the cyclodepolymerisation of linear polyesters , 1999 .

[50]  C. Housecroft,et al.  Chiral 1,2-ethanediyl-spaced quaterpyridines give a library of cyclic and double helicates with copper(I) , 1999 .

[51]  G. Mclendon,et al.  A Virtual Library Approach To Investigate Protein Folding and Internal Packing , 2000 .

[52]  Thomas Peters,et al.  Bioaffinity NMR Spectroscopy: Identification of an E‐Selectin Antagonist in a Substance Mixture by Transfer NOE , 1999 .

[53]  D. Reinhoudt,et al.  A Combinatorial Approach to Synthetic Receptors , 1999 .

[54]  S. Rowan,et al.  ‘Living’ macrolactonisation: thermodynamically-controlled cyclisation and interconversion of oligocholates , 1996 .

[55]  J. Sanders,et al.  Thermodynamically-controlled cyclisation and interconversion of oligocholates: metal ion templated ‘living’ macrolactonisation , 1997 .

[56]  Jeremy K. M. Sanders,et al.  Dynamic combinatorial libraries of pseudo-peptide hydrazone macrocycles , 1999 .

[57]  Fuchs,et al.  Dioxadiazadecalin/Salen Tautomeric Macrocycles and Complexes: Prototypal Dynamic Combinatorial Virtual Libraries New Supramolecular Host Systems, Part 12. Part 11: ref. 1. We gratefully acknowledge support by a research grant from the Israel Science Foundation and by an Intel Scholarship (to A.S.), , 2000, Angewandte Chemie.

[58]  A. Eliseev,et al.  Use of Molecular Recognition To Drive Chemical Evolution: Mechanisms of an Automated Genetic Algorithm Implementation , 1998 .

[59]  D. Reinhoudt,et al.  Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems , 1998 .

[60]  Robert Hughes,et al.  Target-Accelerated Combinatorial Synthesis and Discovery of Highly Potent Antibiotics Effective Against Vancomycin-Resistant Bacteria. , 2000, Angewandte Chemie.

[61]  Philip S. Lukeman,et al.  Engineering diversity into dynamic combinatorial libraries by use of a small flexible building block , 1998 .

[62]  M. Fujita,et al.  Self- and hetero-recognition in the guest-controlled assembly of Pd(II)-linked cages from two different ligands , 2000 .

[63]  David A. Leigh,et al.  Organic “Magic Rings”: The Hydrogen Bond-Directed Assembly of Catenanes under Thermodynamic Control , 1999 .

[64]  A V Eliseev,et al.  Double-level "orthogonal" dynamic combinatorial libraries on transition metal template. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Jeremy K. M. Sanders,et al.  Dynamic Combinatorial Libraries of Macrocyclic Disulfides in Water , 2000 .

[66]  Tomikazu Sasaki,et al.  A self-adjusting carbohydrate ligand for GalNAc specific lectins , 1997 .

[67]  J. Lehn,et al.  Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Lehn,et al.  Induced Fit Selection of a Barbiturate Receptor from a Dynamic Structural and Conformational/Configurational Library , 1999 .