Technical and economic comparison of grid supportive vanadium redox flow batteries for primary control reserve and community electricity storage in Germany

Aquesta es una copia de la versio author’s final draft d'un article publicat a la revista [International journal of energy research]. URL d'aquest document a UPCommons E-prints: http://hdl.handle.net/2117/127058

[1]  Julia Badeda,et al.  Price development and bidding strategies for battery energy storage systems on the primary control reserve market , 2017 .

[2]  Benedikt Battke,et al.  A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications , 2013 .

[3]  M. Sterner,et al.  Energiespeicher - Bedarf, Technologien, Integration , 2014 .

[4]  S. Rosenberger,et al.  Energy storage potential in the Northern German region Osnabrück-Steinfurt , 2016, 2016 International Energy and Sustainability Conference (IESC).

[5]  Andreas Sumper,et al.  Techno-economic comparison of a schedule-based and a forecast-based control strategy for residential photovoltaic storage systems in Germany , 2016 .

[6]  Jie Bao,et al.  Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery , 2012 .

[7]  E. Gaudchau,et al.  Quartierspeicher: Definition, rechtlicher Rahmen und Perspektiven , 2016 .

[8]  Andreas Jossen,et al.  Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids , 2017 .

[9]  Johannes Fleer,et al.  Impact analysis of different operation strategies for battery energy storage systems providing primary control reserve , 2016 .

[10]  Andreas Sumper,et al.  Participation of wind power plants in system frequency control: Review of grid code requirements and control methods , 2014 .

[11]  Thomas Brunn,et al.  The Reform of the Renewable Energy Sources Act (Erneuerbare-Energien-Gesetz/EEG) 2014 in Germany , 2014 .

[12]  Fabio Genoese,et al.  Energietechnologien der Zukunft , 2015 .

[13]  Felix Braam,et al.  Distributed solar battery systems providing primary control reserve , 2016 .

[14]  Álvaro Cunha,et al.  Vanadium redox flow batteries: a technology review , 2015 .

[15]  Mark Gillott,et al.  Optimum community energy storage system for PV energy time-shift , 2015 .

[16]  Lidiya Komsiyska,et al.  Modeling a vanadium redox flow battery system for large scale applications , 2013 .

[17]  Andreas Sumper,et al.  Comparison of control strategies of residential PV storage systems , 2015 .

[18]  Fabio Genoese Modellgestützte Bedarfs- und Wirtschaftlichkeitsanalyse von Energiespeichern zur Integration erneuerbarer Energien in Deutschland , 2013 .

[19]  Dirk Uwe Sauer,et al.  Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption , 2015 .

[20]  Julia Badeda,et al.  Model-based Economic Assessment of Stationary Battery Systems Providing Primary Control Reserve☆ , 2016 .

[21]  Andreas Jossen,et al.  Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis , 2018 .

[22]  Benedikt Battke,et al.  Use cases for stationary battery technologies: A review of the literature and existing projects , 2016 .

[23]  Andreas Jossen,et al.  Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany , 2016 .

[24]  Gang Qiu,et al.  3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery , 2012 .

[25]  Armin Steinbach Teil 3 EnWG Gesetz über die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz – EnWG) – Auszug – , 2012 .

[26]  J. Bao,et al.  Studies on pressure losses and flow rate optimization in vanadium redox flow battery , 2014 .

[27]  P. Cañizares,et al.  Vanadium redox flow batteries for the storage of electricity produced in wind turbines , 2018 .

[28]  T. Schmidt,et al.  The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model , 2014 .

[29]  Andreas Sumper,et al.  Increasing the hosting capacity of distribution grids by implementing residential PV storage systems and reactive power control , 2016, 2016 13th International Conference on the European Energy Market (EEM).

[30]  Albert Molderink,et al.  Break‐even analysis for the storage of PV in power distribution grids , 2014 .

[31]  Martin Kumar Patel,et al.  An interdisciplinary review of energy storage for communities: Challenges and perspectives , 2017 .

[32]  S. König,et al.  Innovative model-based flow rate optimization for vanadium redox flow batteries , 2016 .

[33]  Christopher Betzin,et al.  Electrical operation behavior and energy efficiency of battery systems in a virtual storage power plant for primary control reserve , 2018 .

[34]  Andreas Sumper,et al.  Impact of operation strategies of large scale battery systems on distribution grid planning in Germany , 2017 .

[35]  Qiong Zheng,et al.  Development and perspective in vanadium flow battery modeling , 2014 .

[36]  S. Hameer,et al.  A review of large‐scale electrical energy storage , 2015 .

[37]  Rolf Witzmann,et al.  Comparison of decentralised and centralised grid‐compatible battery storage systems in distribution grids with high PV penetration , 2016 .

[38]  Peter Droege,et al.  Editorial to the proceedings of the 9th International Renewable Energy Storage Conference (IRES 2015) , 2015 .

[39]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[40]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[41]  Ilja Pawel,et al.  The Cost of Storage – How to Calculate the Levelized Cost of Stored Energy (LCOE) and Applications to Renewable Energy Generation , 2014 .