Concrete model with normality and sequential identification

Abstract To facilitate numerical finite element analysis, it is desirable to endow the constitutive model with normality, associatedness, continuity, convexity and absence of corners. Although these mathematical conditions represent only crude approximations of the actual behavior of concrete, it is of interest to find the best possible constitutive model which meets these conditons. This is one objective of the present paper. The second objective is to develop a model which permits a simple identification of material parameters from test data. The material parameters need not be obtained by simultaneous nonlinear optimization of the fits of all data. Rather, they are obtained in sequence through a precisely defined procedure which involves solving two systems of linear equations. The model describes not only hardening but also post-peak softening under various triaxial stress states. The model agrees well with the available basic test data from monotonic loading tests.

[1]  R. M. Zimmerman,et al.  Behavior of concrete under multiaxial stress states , 1980 .

[2]  Ted Belytschko,et al.  Continuum Theory for Strain‐Softening , 1984 .

[3]  Zdeněk P. Bažant,et al.  Hysteretic Fracturing Endochronic Theory for Concrete , 1980 .

[4]  M. Kotsovos,et al.  Generalized Stress-Strain Relations for Concrete , 1978 .

[5]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[6]  Wai-Fah Chen,et al.  CONSTITUTIVE RELATIONS FOR CONCRETE , 1975 .

[7]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[8]  Z. Bažant,et al.  Plastic-Fracturing Theory for Concrete , 1979 .

[9]  Kaspar Willam,et al.  Recent developments in the finite element analysis of prestressed concrete reactor vessels , 1974 .

[10]  H. Gachon,et al.  Strain and ultimate strength of concrete under triaxial stress , 1971 .

[11]  J.G.M. van Mier,et al.  Strain-softening of concrete under multiaxial loading conditions , 1984 .

[12]  P. Petersson Crack growth and development of fracture zones in plain concrete and similar materials , 1981 .

[13]  Zdeněk P. Bažant,et al.  Endochronic model for nonlinear triaxial behavior of concrete , 1978 .

[14]  E. P. Warnke,et al.  CONSTITUTIVE MODEL FOR THE TRIAXIAL BEHAVIOR OF CONCRETE , 1975 .

[15]  Zdeněk P. Bažant,et al.  Work inequalities for plastic fracturing materials , 1980 .

[16]  Z. Bažant,et al.  Damage-plastic loading surface model for concrete , 1987 .

[17]  Zdenek P. Bazant,et al.  CONVEXITY OF SMOOTH YIELD SURFACE OF FRICTIONAL MATERIAL , 1986 .

[18]  Eivind Hognestad,et al.  Concrete Stress Distribution in Ultimate Strength Design , 1955 .

[19]  Leonard R. Herrmann,et al.  A Bounding Surface Plasticity Model for Concrete , 1985 .

[20]  D. Owen,et al.  Finite elements in plasticity : theory and practice , 1980 .

[21]  Oral Büyüköztürk,et al.  Concrete in Biaxial Cyclic Compression , 1984 .

[22]  B. Sinha,et al.  STRESS - STRAIN RELATIONS FOR CONCRETE UNDER CYCLIC LOADING , 1964 .

[23]  G. Gudehus,et al.  Elastoplastische Stoffgleichungen für trockenen Sand , 1973 .

[24]  S. J. Green,et al.  Static Constitutive Relations for Concrete , 1973 .

[25]  Yukio Takahashi,et al.  Elastic-Plastic Constitutive Modeling of Concrete , 1983 .

[26]  Zdenek P. Bazant,et al.  ENDOCHRONIC THEORY OF INELASTICITY AND FAILURE OF CONCRETE , 1976 .

[27]  Zdenik P Baiant,et al.  Mechanics of distributed cracking , 2022 .

[28]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .

[29]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[30]  Ernst Melan,et al.  Zur Plastizität des räumlichen Kontinuums , 1938 .

[31]  Oral Buyukozturk,et al.  CONSTITUTIVE MODEL FOR CONCRETE IN COMPRESSION. , 1979 .

[32]  Byung H. Oh,et al.  Microplane Model for Progressive Fracture of Concrete and Rock , 1985 .

[33]  Zdenek P. Bazant,et al.  TOTAL STRAIN THEORY AND PATH - DEPENDENCE OF CONCRETE , 1980 .