Coyote optimization algorithm for the parameter extraction of photovoltaic cells

Abstract In this paper, a new and powerful metaheuristic optimization technique known as the Coyote Optimization Algorithm (COA) is proposed for the parameter extraction of the PV cell/module. It is utilized to identify the parameters of the single diode and two-diode models. Inspired by the social norms adopted by the coyotes to ensure the survivability of their species, the COA possesses several outstanding merits such as low number of control parameters, ease of implementation and diverse mechanisms for balancing exploration and exploitation. For physically meaningful solutions, a set of parametric constraints is introduced to prevent the coyotes from straying outside of the predefined boundaries of the search space. Extensive tests indicate that the proposed optimizer exhibits superior accuracy compared to other state-of-the-art EA-based parameter extraction methods. It achieved root-mean-square error (RSME) as low as 7.7301E-04 A and 7.3265E-04 A, for the single-diode and two-diode models, respectively. Moreover, the algorithm maintains outstanding performance when tested on an assortment of modules of different technologies (i.e. mono-crystalline, poly-crystalline, and thin film) at varying irradiance and temperature. The standard deviations (STDs) of the fitness values over 35 runs are measured to be less than 1 × 10−5 for both models. This suggests that the results produced by the algorithm are highly consistent. With these outstanding merits, the COA is envisaged to be a competitive option for the parameter extraction problem of PV cell/module.

[1]  Alessandro Virtuani,et al.  Modelling the performance of amorphous and crystalline silicon in different typologies of building-integrated photovoltaic (BIPV) conditions , 2017 .

[2]  Giuseppe Marco Tina,et al.  Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module , 2013 .

[3]  Joseph Appelbaum,et al.  Estimation of multi‐junction solar cell parameters , 2012 .

[4]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[5]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[6]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[7]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[8]  Alireza Rezazadeh,et al.  Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach , 2013 .

[9]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[10]  Mehdi Bigdeli,et al.  Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm , 2016 .

[11]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[12]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[13]  Amir Mosavi,et al.  Modeling the time-dependent characteristics of perovskite solar cells , 2018, Solar Energy.

[14]  M. Chegaar,et al.  A new method for evaluating illuminated solar cell parameters , 2001 .

[15]  Gustavo Nofuentes,et al.  Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure , 2016 .

[16]  Yuqing He,et al.  Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm , 2014 .

[17]  J. A. Gow,et al.  Development of a photovoltaic array model for use in power-electronics simulation studies , 1999 .

[18]  Montaser Abd El Sattar,et al.  Novel seven-parameter model for photovoltaic modules , 2014 .

[19]  Nasrudin Abd Rahim,et al.  Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization , 2016 .

[20]  Wei Han,et al.  Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm , 2014, TheScientificWorldJournal.

[21]  Abdullah Al Mamun,et al.  Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization , 2009, Eur. J. Oper. Res..

[22]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[23]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[24]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[25]  Gang Yao,et al.  Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm , 2018, Solar Energy.

[26]  Antonino Laudani,et al.  An in-depth analysis of the modelling of organic solar cells using multiple-diode circuits , 2016 .

[27]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[28]  Frederick F. Knowlton,et al.  Evaluating coyote management strategies using a spatially explicit, individual-based, socially structured population model , 2008 .

[29]  O. S. Sastry,et al.  Thermal modelling and experimental validation of hot spot in crystalline silicon photovoltaic modules for real outdoor condition , 2016 .

[30]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[31]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[32]  N. Rajasekar,et al.  Analysis on solar PV emulators: A review , 2018 .

[33]  Hasimah Abdul Rahman,et al.  Performance degradation of photovoltaic power system: Review on mitigation methods , 2017 .

[34]  Mojtaba Alizadeh,et al.  Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization Algorithm , 2019, Solar Energy.

[35]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001 .

[36]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[37]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[38]  A. Kapoor,et al.  A new approach to study organic solar cell using Lambert W-function , 2005 .

[39]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[40]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[41]  Tomas Matuska,et al.  Influence of increased temperature on energy production of roof integrated PV panels , 2018 .

[42]  K. Ebihara,et al.  Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system , 2001 .

[43]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[44]  Zainal Salam,et al.  A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells , 2019, Applied Energy.

[45]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[46]  S. K. Parida,et al.  An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint , 2016 .

[47]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[48]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[49]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[50]  Mohamed Abd Elaziz,et al.  Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm , 2018, Energy Conversion and Management.

[51]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[52]  Nabil Kahoul,et al.  Assessing the early degradation of photovoltaic modules performance in the Saharan region , 2014 .

[53]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[54]  Birinchi Bora,et al.  Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India , 2016 .

[55]  Thomas Reindl,et al.  Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage , 2014 .

[56]  S. Valkealahti,et al.  Power Losses in Long String and Parallel-Connected Short Strings of Series-Connected Silicon-Based Photovoltaic Modules Due to Partial Shading Conditions , 2012, IEEE Transactions on Energy Conversion.

[57]  M. Vitelli,et al.  Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems , 2012 .

[58]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[59]  Maria Grazia De Giorgi,et al.  Study of degradation of a grid connected photovoltaic system , 2017 .

[60]  Kay-Soon Low,et al.  Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint , 2012, IEEE Transactions on Power Electronics.

[61]  E. E. van Dyk,et al.  Assessing the reliability and degradation of photovoltaic module performance parameters , 2004, IEEE Transactions on Reliability.

[62]  Lei Guo,et al.  Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm , 2016 .

[63]  Mark W. Davis,et al.  Prediction of Building Integrated Photovoltaic Cell Temperatures , 2001 .

[64]  Nick Bosco,et al.  Evaluation of high‐temperature exposure of photovoltaic modules , 2011 .

[65]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[66]  Z. Salam,et al.  An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution , 2016 .

[67]  Chuanzhong Xu,et al.  Lumped-Parameter Equivalent Circuit Model for S-Shaped Current–Voltage Characteristics of Organic Solar Cells , 2019, IEEE Transactions on Electron Devices.

[68]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[69]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[70]  Shyam,et al.  A thermal model for N series connected glass/cell/polymer sheet and glass/cell/glass crystalline silicon photovoltaic modules with hot solar cells connected in series and its thermal losses in real outdoor condition , 2018, Renewable Energy.

[71]  Amir Mohammad Beigi,et al.  Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms , 2018, Solar Energy.

[72]  A. Mellit,et al.  A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy , 2010 .

[73]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[74]  N. Park,et al.  Effect of Temperature and Humidity on the Degradation Rate of Multicrystalline Silicon Photovoltaic Module , 2013 .

[75]  Paul W. Box,et al.  An individual-based model of canid populations: modelling territoriality and social structure , 2003 .

[76]  Aboul Ella Hassanien,et al.  A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells , 2017 .

[77]  Z. Salam,et al.  An Accurate and Fast Computational Algorithm for the Two-diode Model of PV Module Based on a Hybrid Method , 2017, IEEE Transactions on Industrial Electronics.

[78]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[79]  Zhicong Chen,et al.  Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm , 2017 .

[80]  Marcello Artioli,et al.  Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis , 2010 .

[81]  Kashif Ishaque,et al.  A critical evaluation of EA computational methods for Photovoltaic cell parameter extraction based on two diode model , 2011 .

[82]  Zhicong Chen,et al.  A Population Classification Evolution Algorithm for the Parameter Extraction of Solar Cell Models , 2016 .