An adaptive finite element method for inviscid compressible flow

We present an adaptive finite element method for the compressible Euler equations, based on a posteriori error estimation of a quantity of interest in terms of a dual problem for the linearized equations. Continuous piecewise linear approximation is used in space and time, with componentwise weighted least-squares stabilization of convection terms and residual-based shock-capturing. The adaptive algorithm is demonstrated numerically for the quantity of interest being the drag force on a body.

[1]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[2]  Thomas J. R. Hughes,et al.  Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations , 1983 .

[3]  A. B. Bailey,et al.  Sphere drag at Mach numbers from 0·3 to 2·0 at Reynolds numbers approaching 107 , 1979, Journal of Fluid Mechanics.

[4]  Alvaro L. G. A. Coutinho,et al.  Three-Dimensional Edge-Based SUPG Computation of Inviscid Compressible Flows With YZβ Shock-Capturing , 2009 .

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  Haihang You,et al.  Adaptive Discontinuous Galerkin Finite Element Methods , 2009 .

[7]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[8]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[9]  Richard C. Martineau,et al.  Characteristic Boundary Conditions for the Two-Step Taylor-Galerkin FEM , 2006 .

[10]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws , 1998 .

[11]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[12]  A. B. Bailey,et al.  Free-Flight Measurements of Sphere Drag at Subsonic, Transonic, Supersonic, and Hypersonic Speeds for Continuum, Transition, and Near-Free- Molecular Flow Conditions , 1971 .

[13]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[14]  Ralf Hartmann Adaptive Fe Methods for Conservation Equations , 2001 .

[15]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[16]  M. Rivara,et al.  Local modification of meshes for adaptive and/or multigrid finite-element methods , 1991 .

[17]  Stefano Giani,et al.  Anisotropic hp-adaptive discontinuous Galerkin finite element methods for compressible fluid flows. , 2001 .

[18]  Johan Hoffman,et al.  A new approach to computational turbulence modeling , 2006 .

[19]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[20]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[21]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[22]  Johan Hoffman,et al.  Adaptive simulation of the subcritical flow past a sphere , 2006, Journal of Fluid Mechanics.

[23]  Tayfun E. Tezduyar,et al.  Parallel computation of unsteady compressible flows with the EDICT , 1999 .

[24]  Alvaro L. G. A. Coutinho,et al.  Compressible flow SUPG parameters computed from element matrices , 2005 .

[25]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[26]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[27]  Alvaro L. G. A. Coutinho,et al.  Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices , 2006 .

[28]  Johan Hoffman,et al.  Efficient computation of mean drag for the subcritical flow past a circular cylinder using general Galerkin G2 , 2009 .

[29]  Ralf Hartmann,et al.  Goal-oriented a posteriori error estimation for compressible fluid flows , 2003 .

[30]  Johan Hoffman,et al.  Computation of Mean Drag for Bluff Body Problems Using Adaptive DNS/LES , 2005, SIAM J. Sci. Comput..

[31]  A. Charters,et al.  The Aerodynamic Performance of Small Spheres from Subsonic to High Supersonic Velocities , 1945 .

[32]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[33]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[34]  Erik Burman,et al.  Adaptive finite element methods for compressible flow , 2000 .

[35]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[36]  Timothy J. Barth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .