Influence of winding angle on the strength and deformation of filament-wound composite tubes subjected to uniaxial and biaxial loads

Abstract Experimental data are presented to show the effects of winding angle on the strength of 100 mm diameter, 1 mm thick, filament wound E-glass fibre reinforced epoxy resin tubes tested under various combinations of internal pressure and axial tension or compression. Leakage and fracture strength envelopes are presented for ±45°, ±55° and ±75° winding angle tubes subjected to a wide range of different biaxial membrane stress states. Strengths range from 30 to 1250 MPa. Axial compression test results for tubes with wall thicknesses ranging from 1 to 3·6 mm establish the influence of shell buckling. Stress/strain curves up to fracture under three different types of loading show the effects of the winding angle on elastic constants and on nonlinear stress strain behaviour.