Categorical models of linear logic revisited
暂无分享,去创建一个
[1] Paul-André Melliès. Comparing hierarchies of types in models of linear logic , 2004, Inf. Comput..
[2] Pierre-Louis Curien. On the Symmetry of Sequentiality , 1993, MFPS.
[3] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[4] Roberto M. Amadio,et al. Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.
[5] S. Abramsky. Game Semantics , 1999 .
[6] Thomas Ehrhard. A Relative PCF-Definability Result for Strongly Stable Functions and some Corollaries , 1999, Inf. Comput..
[7] Olivier Laurent. Polarized Proof-Nets and Lambda µ-Calculus , 1999 .
[8] G. M. Kelly,et al. A universal property of the convolution monoidal structure , 1986 .
[9] Guy McCusker. A Fully Abstract Relational Model of Syntactic Control of Interference , 2002, CSL.
[10] Jean-Yves Girard,et al. A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.
[11] Radha Jagadeesan,et al. New foundations for the geometry of interaction , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.
[12] Edmund Robinson,et al. Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[15] A. Kock. Strong functors and monoidal monads , 1972 .
[16] Philippa Gardner,et al. From Action Calculi to Linear Logic , 1997, CSL.
[17] Thomas Streicher,et al. Continuation Models Are Universal for -calculus , 1997 .
[18] Michael Barr,et al. *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.
[19] Jean-Yves Girard,et al. The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..
[20] Andrew G. Barber,et al. Linear type theories, semantics and action calculi , 1997 .
[21] Peter Selinger,et al. Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.
[22] Thomas Ehrhard,et al. Quantitative Semantics Revisited , 1999, TLCA.
[23] Glynn Winskel,et al. A Linear Metalanguage for Concurrency , 1998, AMAST.
[24] Valeria C V de Paiva,et al. Term Assignment for Intuitionistic Linear Logic , 1992 .
[25] Nick Benton,et al. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.
[26] Gavin M. Bierman. What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.
[27] Pierre-Louis Curien,et al. Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..
[28] R. A. G. Seely,et al. Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .
[29] Gérard Berry,et al. Stable Models of Typed lambda-Calculi , 1978, ICALP.
[30] Masahito Hasegawa,et al. Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.