N-Term Karatsuba Algorithm and its Application to Multiplier Designs for Special Trinomials
暂无分享,去创建一个
Xiaoli Guo | Yu Zhang | Chuanda Qi | Yin Li | Yu Zhang | Yin Li | Xiaoli Guo | Chuanda Qi
[1] Anatolij A. Karatsuba,et al. Multiplication of Multidigit Numbers on Automata , 1963 .
[2] Arash Reyhani-Masoleh,et al. Bit-Serial and Bit-Parallel Montgomery Multiplication and Squaring over GF(2^m) , 2009, IEEE Transactions on Computers.
[3] Harald Niederreiter,et al. Finite fields: Preface , 1996 .
[4] Huapeng Wu,et al. Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis , 2002, IEEE Trans. Computers.
[5] Alessandro Cilardo. Fast Parallel GF(2^m) Polynomial Multiplication for All Degrees , 2013, IEEE Transactions on Computers.
[6] Tsuyoshi Murata,et al. {m , 1934, ACML.
[7] Christophe Nègre. Efficient parallel multiplier in shifted polynomial basis , 2007, J. Syst. Archit..
[8] Michele Elia,et al. Low Complexity Bit-Parallel Multipliers for GF(2^m) with Generator Polynomial x^m+x^k+1 , 1999 .
[9] A. Menezes,et al. Applications of Finite Fields , 1992 .
[10] Yin Li,et al. Speedup of bit-parallel Karatsuba multiplier in GF(2m) generated by trinomials , 2011, Inf. Process. Lett..
[11] Dowon Hong,et al. Low complexity bit-parallel multiplier for GF(2/sup m/) defined by all-one polynomials using redundant representation , 2005, IEEE Transactions on Computers.
[12] Huapeng Wu. Montgomery Multiplier and Squarer for a Class of Finite Fields , 2002, IEEE Trans. Computers.
[13] Yin Li,et al. Novel bit-parallel multiplier for GF(2m) defined by all-one polynomial using generalized Karatsuba algorithm , 2014, Inf. Process. Lett..
[14] Ming Gu,et al. Overlap-free Karatsuba-Ofman polynomial multiplication algorithms , 2010 .
[15] Yin Li,et al. New bit-parallel Montgomery multiplier for trinomials using squaring operation , 2016, Integr..
[16] M. Anwar Hasan,et al. A survey of some recent bit-parallel GF(2n) multipliers , 2015, Finite Fields Their Appl..
[17] Christof Paar,et al. Generalizations of the Karatsuba Algorithm for Efficient Implementations , 2006, IACR Cryptol. ePrint Arch..
[18] Haibin Shen,et al. Low complexity bit parallel multiplier for GF(2m) generated by equally-spaced trinomials , 2008, Inf. Process. Lett..
[19] Yin Li,et al. Mastrovito Form of Non-Recursive Karatsuba Multiplier for All Trinomials , 2017, IEEE Transactions on Computers.
[20] Ian F. Blake,et al. Elliptic curves in cryptography , 1999 .
[21] Peter L. Montgomery,et al. Five, six, and seven-term Karatsuba-like formulae , 2005, IEEE Transactions on Computers.
[22] Rudolf Lide,et al. Finite fields , 1983 .
[23] Yin Li,et al. Efficient Nonrecursive Bit-Parallel Karatsuba Multiplier for a Special Class of Trinomials , 2018, VLSI Design.
[24] Haining Fan. A Chinese Remainder Theorem Approach to Bit-Parallel $GF(2^{n})$ Polynomial Basis Multipliers for Irreducible Trinomials , 2016, IEEE Transactions on Computers.
[25] Tong Zhang,et al. Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials , 2001, IEEE Trans. Computers.
[26] Guochu Shou,et al. Low complexity architecture of bit parallel multipliers for GF(2 m ) , 2010 .
[27] Ming Gu,et al. Obtaining more Karatsuba-like formulae over the binary field , 2012, IET Inf. Secur..
[28] Berk Sunar,et al. Mastrovito Multiplier for All Trinomials , 1999, IEEE Trans. Computers.
[29] Yiqi Dai,et al. Fast Bit-Parallel GF(2^n) Multiplier for All Trinomials , 2005, IEEE Trans. Computers.