Applications for Environmental Sensing in EveryAware

This chapter provides a technical description of the EveryAware applications for air quality and noise monitoring. Specifically, we introduce AirProbe, for measuring air quality, and WideNoise Plus for estimating environmental noise. We also include an overview on hardware components and smartphone-based measurement technology, and we present the according web backend, e.g., providing for real-time tracking, data storage, analysis and visualizations.

[1]  Jay R. Turner,et al.  Post-processing Method to Reduce Noise while Preserving High Time Resolution in Aethalometer Real-time Black Carbon Data , 2011 .

[2]  Florian Lemmerich,et al.  Exploratory pattern mining on social media using geo-references and social tagging information , 2013, Int. J. Web Sci..

[3]  Gourab Ghoshal,et al.  Complex Networks IV - Proceedings of the 4th Workshop on Complex Networks CompleNet 2013, Berlin, Germany, March 13-15, 2013 , 2013, CompleNet.

[4]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[5]  E. Massera,et al.  On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario , 2008 .

[6]  Andreas Hotho,et al.  On the Semantics of User Interaction in Social Media , 2013, LWA.

[7]  Frank Puppe,et al.  Meta-Level Information Extraction , 2009, LWA.

[8]  Vittorio Loreto,et al.  Participatory Patterns in an International Air Quality Monitoring Initiative , 2015, PloS one.

[9]  Martin Atzmüller,et al.  Description-oriented community detection using exhaustive subgroup discovery , 2016, Inf. Sci..

[10]  Frank Puppe,et al.  A case-based approach for characterization and analysis of subgroup patterns , 2008, Applied Intelligence.

[11]  Frank Puppe,et al.  Rule-Based Information Extraction for Structured Data Acquisition using TextMarker , 2008, LWA.

[12]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[13]  Eiman Kanjo,et al.  NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping , 2010, Mob. Networks Appl..

[14]  H. Ishida,et al.  Gas sensor network for air-pollution monitoring , 2005 .

[15]  Andreas Hotho,et al.  Ubicon: Observing Physical and Social Activities , 2012, 2012 IEEE International Conference on Green Computing and Communications.

[16]  C. Pijolat,et al.  Calibration of a multivariate gas sensing device for atmospheric pollution measurement , 2006 .

[17]  Andreas Hotho,et al.  A generic platform for ubiquitous and subjective data , 2013, UbiComp.

[18]  Martin Atzmüller,et al.  Subgroup discovery , 2005, Künstliche Intell..

[19]  Giuliano Martinelli,et al.  Basic interpretation of thick film gas sensors for atmospheric application , 2007 .

[20]  Andreas Hotho,et al.  Ubicon and its applications for ubiquitous social computing , 2014, New Rev. Hypermedia Multim..

[21]  Vittorio Loreto,et al.  Awareness and Learning in Participatory Noise Sensing , 2013, PloS one.

[22]  Martin Atzmüller,et al.  Exploratory Subgroup Analytics on Ubiquitous Data , 2013, MSM/MUSE.

[23]  M. Carotta,et al.  Nanostructured thick-film gas sensors for atmospheric pollutant monitoring: quantitative analysis on field tests , 2001 .

[24]  Giuliano Martinelli,et al.  Array of thick film sensors for atmospheric pollutant monitoring , 2000 .

[25]  Matthias Stevens,et al.  Participatory noise pollution monitoring using mobile phones , 2010, Inf. Polity.

[26]  S. D. Vito,et al.  CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization , 2009 .