Modeling Interconnects for Post-CMOS Devices and Comparison With Copper Interconnects

Power dissipation in charge-based technology is the biggest roadblock toward miniaturizing circuits. Quantum-mechanical tunneling and subthreshold leakage current will ultimately limit scaling of silicon field-effect transistors. To continue Moore's law scaling, it is imperative that devices working with a state variable other than electron charge are sought for. Examples of alternate state variables include electron spins, pseudo-spins in graphene, direct and indirect excitons, plasmons, and phonons. At the same time, interconnection aspects of devices utilizing novel state variables must be considered early on. This paper provides a framework to quantify energy dissipation in interconnects for novel state variables. Models for energy per bit are then used along with previously derived models for delay of interconnects for novel state variables to compare performance and energy dissipation of novel interconnects with complementary metal-oxide-semiconductor (CMOS) interconnects. Comparison results provide important insights into material, device, and circuit implications of post-CMOS technologies.

[1]  Andrew D. Kent,et al.  Spin-torque transfer in batch-fabricated spin-valve magnetic nanojunctions (invited) , 2003 .

[2]  A. MacDonald,et al.  How to make a bilayer exciton condensate flow , 2008, 0801.3694.

[3]  P. San-Jose,et al.  Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. , 2009, Physical review letters.

[4]  James D. Meindl,et al.  Performance Benchmarking for Graphene Nanoribbon, Carbon Nanotube, and Cu Interconnects , 2008, 2008 International Interconnect Technology Conference.

[5]  Kang L. Wang,et al.  Feasibility study of logic circuits with a spin wave bus , 2007, Nanotechnology.

[6]  Jae Young Lee,et al.  Alternate State Variables for Emerging Nanoelectronic Devices , 2009, IEEE Transactions on Nanotechnology.

[7]  Robert A. Buhrman,et al.  Reduction of spin-torque switching currents by partially canceling the free layer demagnetization field , 2009 .

[8]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[9]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[10]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[11]  Yuri S. Kivshar,et al.  Thermal conductivity of single-walled carbon nanotubes , 2009 .

[12]  George Bourianoff,et al.  The Future of Nanocomputing , 2003, Computer.

[13]  Ji-Young Kim,et al.  Spin Wave Logic Circuit on Silicon Platform , 2008, Fifth International Conference on Information Technology: New Generations (itng 2008).

[14]  Spin-drift transport and its applications , 2002, cond-mat/0201481.

[15]  Baowen Li,et al.  Negative differential thermal resistance and thermal transistor , 2006 .

[16]  B. Wees,et al.  Electronic spin transport and spin precession in single graphene layers at room temperature , 2007, Nature.

[17]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[18]  D. Nikonov,et al.  Operation and Modeling of Semiconductor Spintronics Computing Devices , 2008 .

[19]  G. P. Srivastava,et al.  Size and temperature dependence of the specific heat capacity of carbon nanotubes , 2006 .

[20]  Sadamichi Maekawa,et al.  Concepts in spin electronics , 2006 .

[21]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[22]  M. Hosomi,et al.  A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[23]  Kosmas Galatsis,et al.  Logic Devices with Spin Wave Buses - an Approach to Scalable Magneto-Electric Circuitry , 2008 .

[24]  Thomas Szkopek,et al.  Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. , 2007, Optics express.

[25]  Jiuning Hu,et al.  Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. , 2009, Nano letters.

[26]  K.L. Wang,et al.  Spin Wave Magnetic NanoFabric: A New Approach to Spin-Based Logic Circuitry , 2008, IEEE Transactions on Magnetics.

[27]  Uri C. Weiser,et al.  Interconnect-power dissipation in a microprocessor , 2004, SLIP '04.

[28]  Masashi Shiraishi,et al.  Spin transport in single- and multi-layer graphene , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[29]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[30]  M. Cottam Linear and nonlinear spin waves in magnetic films and superlattices , 1994 .

[31]  Mircea R. Stan,et al.  Conformational Molecular Switches for Post-CMOS Nanoelectronics , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Joel E. Moore,et al.  Multiferroic materials for spin-based logic devices , 2008, 0804.1539.

[33]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[34]  R. Cavin,et al.  Research directions and challenges in nanoelectronics , 2006 .

[35]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[36]  H. Ohno,et al.  Semiconductor spintronics , 2002 .

[37]  Azad Naeemi,et al.  Interconnects for Novel State Variables: Performance Modeling and Device and Circuit Implications , 2010, IEEE Transactions on Electron Devices.

[38]  F. J. García de abajo,et al.  Robust plasmon waveguides in strongly interacting nanowire arrays. , 2008, Nano letters.

[39]  Jung Hoon Han,et al.  Exciton formation in graphene bilayer , 2007, 0709.1230.

[40]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[41]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[42]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[43]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .