Constrained diffusion kurtosis imaging using ternary quartics & MLE

Diffusion kurtosis imaging (DKI) is a recent improvement over diffusion tensor imaging that characterizes tissue by quantifying non‐gaussian diffusion using a 3D fourth‐order kurtosis tensor. DKI needs to consider three constraints to be physically relevant. Further, it can be improved by considering the Rician signal noise model. A DKI estimation method is proposed that considers all three constraints correctly, accounts for the signal noise and incorporates efficient gradient‐based optimization to improve over existing methods.

[1]  Angelos Barmpoutis,et al.  Diffusion kurtosis imaging: Robust estimation from DW-MRI using homogeneous polynomials , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[2]  An improved method for diffusional kurtosis estimation , 2009 .

[3]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[4]  B. Ardekani,et al.  Estimation of tensors and tensor‐derived measures in diffusional kurtosis imaging , 2011, Magnetic resonance in medicine.

[5]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[6]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[7]  Rachid Deriche,et al.  Ternary Quartic approach for positive 4th order diffusion tensors revisited , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[8]  Baba C. Vemuri,et al.  Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI , 2007, IPMI.

[9]  Liang Xuan,et al.  Estimation of the orientation distribution function from diffusional kurtosis imaging , 2008, Magnetic resonance in medicine.

[10]  Baba C. Vemuri,et al.  Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.

[11]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.

[12]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[13]  Erick Jorge Canales-Rodríguez,et al.  Mathematical description of q‐space in spherical coordinates: Exact q‐ball imaging , 2009, Magnetic resonance in medicine.

[14]  Rachid Deriche,et al.  Optimal Design of Multiple Q-shells experiments for Diffusion MRI , 2011 .

[15]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[16]  Eric Achten,et al.  Optimal Experimental Design for Diffusion Kurtosis Imaging , 2010, IEEE Transactions on Medical Imaging.

[17]  J. Sijbers,et al.  Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model , 2011, Magnetic resonance in medicine.

[18]  Carlo Pierpaoli,et al.  Probabilistic Identification and Estimation of Noise (piesno): a Self-consistent Approach and Its Applications in Mri , 2009 .