The Dalton quantum chemistry program system

Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.

Luca Frediani | Thomas Kjærgaard | Trygve Helgaker | Simen Reine | Celestino Angeli | Bernd Schimmelpfennig | Kenneth Ruud | Jacob Kongsted | Martin J Packer | Ulf Ekström | Sonia Coriani | Zilvinas Rinkevicius | Radovan Bast | Stinne Høst | Branislav Jansík | Jeppe Olsen | Poul Jørgensen | Kestutis Aidas | Marcin Ziolkowski | Ove Christiansen | Patrick Norman | Christof Hättig | Alf Christian Hennum | Renzo Cimiraglia | Mark A Watson | Olav Vahtras | Hans Ågren | Wim Klopper | Henrik Koch | David P Tew | Kasper Kristensen | Jógvan Magnus Haugaard Olsen | Rika Kobayashi | Patrick Ettenhuber | Stefan Knecht | Linus Boman | Vladimir V Rybkin | Ida-Marie Høyvik | Berta Fernández | Andreas Krapp | Stephan P A Sauer | Kurt V Mikkelsen | Christian Neiss | Lea Thøgersen | Filip Pawlowski | Trond Saue | Kristian O. Sylvester-Hvid | Pål Dahle | Joanna Kauczor | Andreas J Thorvaldsen | Peter R Taylor | Andrew M Teale | Patricio F Provasi | Hinne Hettema | Heike Fliegl | Lara Ferrighi | Kasper Hald | J. Olsen | P. Jørgensen | R. Cimiraglia | H. Ågren | K. Mikkelsen | J. J. Eriksen | H. Koch | K. Ruud | T. Helgaker | P. Taylor | A. Krapp | D. Tew | B. Jansik | Stinne Høst | M. Ziółkowski | L. Ferrighi | J. Kongsted | Ž. Rinkevičius | K. Aidas | B. Schimmelpfennig | H. Hettema | O. Christiansen | A. H. Steindal | L. Frediani | David J. D. Wilson | A. M. Teale | W. Klopper | M. Watson | C. Hättig | V. Rybkin | O. Vahtras | Simen Reine | R. Kobayashi | P. Provasi | C. B. Nielsen | D. Jonsson | P. Salek | S. Coriani | P. Norman | C. Neiss | C. Angeli | Keld L. Bak | V. Bakken | Radovan Bast | L. Boman | P. Dahle | E. K. Dalskov | T. Enevoldsen | Heike Fliegl | Kasper Hald | Asger Halkier | H. Heiberg | A. C. Hennum | M. F. Iozzi | J. Kauczor | S. Kirpekar | S. Knecht | A. Ligabue | J. I. Melo | R. H. Myhre | A. Osted | M. Packer | F. Pawłowski | T. B. Pedersen | T. Ruden | C. Samson | T. Saue | S. Sauer | Kristian Sneskov | K. Kristensen | Eirik Hjertenæs | U. Ekström | A. Thorvaldsen | Ola B. Lutnæs | H. Jensen | B. Fernández | Thomas Enevoldsen | Kristian Sneskov | Maria Francesca Iozzi | Vebjørn Bakken | Pawel Sałek | Asger Halkier | Dan Jonsson | Anders Osted | Patrick Ettenhuber | Ida-Marie Høyvik | T. Kjærgaard | A. S. de Merás | E. Tellgren | Lea Thøgersen | Erik I Tellgren | Ola B Lutnæs | Sheela Kirpekar | Andrea Ligabue | Christian B Nielsen | Torgeir A Ruden | Hanne Heiberg | Hans Jørgen Aa Jensen | Jógvan Magnus H Olsen | Rolf H Myhre | David J D Wilson | Keld L Bak | Erik K Dalskov | Janus J Eriksen | Eirik Hjertenæs | Juan I Melo | Thomas B Pedersen | Claire C M Samson | Alfredo Sánchez de Merás | Arnfinn H Steindal | Kristian O Sylvester-Hvid | M. Iozzi | K. Sylvester-Hvid | Christian Neiss

[1]  Thomas Kjærgaard,et al.  Comparison of standard and damped response formulations of magnetic circular dichroism. , 2011, The Journal of chemical physics.

[2]  Stinne Høst,et al.  Local orbitals by minimizing powers of the orbital variance. , 2011, The Journal of chemical physics.

[3]  K. Ruud,et al.  Degenerate four-wave mixing in solution by cubic response theory and the polarizable continuum model. , 2007, The journal of physical chemistry. B.

[4]  K. Ruud,et al.  Multiconfigurational self-consistent field linear response for the polarizable continuum model: Theory and application to ground and excited-state polarizabilities of para-nitroaniline in solution , 2003 .

[5]  H. Ågren,et al.  Theory of natural circular dichroism in x-ray Raman scattering from molecules , 1997 .

[6]  H. Ågren,et al.  Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. , 2010, The Journal of chemical physics.

[7]  K. Mikkelsen,et al.  A coupled-cluster solvent reaction field method , 1999 .

[8]  Mikael P. Johansson,et al.  A stepwise atomic, valence-molecular, and full-molecular optimisation of the Hartree-Fock/Kohn-Sham energy. , 2009, Physical chemistry chemical physics : PCCP.

[9]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[10]  Jógvan Magnus Haugaard Olsen,et al.  Parallelization of the polarizable embedding scheme for higher-order response functions , 2012 .

[11]  H. Koch,et al.  Cholesky decomposition-based definition of atomic subsystems in electronic structure calculations. , 2010, The Journal of chemical physics.

[12]  Paweł Sałek,et al.  Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. , 2007, The Journal of chemical physics.

[13]  P. Lazzeretti,et al.  Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach , 2003 .

[14]  Jacob Kongsted,et al.  Molecular Properties through Polarizable Embedding , 2011 .

[15]  Paweł Sałek,et al.  Density functional theory of nonlinear triplet response properties with applications to phosphorescence , 2003 .

[16]  Hans Ågren,et al.  MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method , 1984 .

[17]  P. Jørgensen,et al.  Implementation of electronic ground states and singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections , 2002 .

[18]  Kurt V. Mikkelsen,et al.  Linear response functions for coupled cluster/molecular mechanics including polarization interactions , 2003 .

[19]  T. Helgaker,et al.  Variational and robust density fitting of four-center two-electron integrals in local metrics. , 2008, The Journal of chemical physics.

[20]  Kenneth Ruud,et al.  Complex polarization propagator calculations of magnetic circular dichroism spectra. , 2008, The Journal of chemical physics.

[21]  Paweł Sałek,et al.  Restricted density functional theory of linear time-dependent properties in open-shell molecules , 2003 .

[22]  H. Koch,et al.  The CCSD(T) Model With Cholesky Decomposition of Orbital Energy Denominators , 2011 .

[23]  Trygve Helgaker,et al.  Hartree-Fock limit magnetizabilities from London orbitals , 1993 .

[24]  J. Olsen,et al.  Spin polarization in restricted electronic structure theory : multiconfiguration self-consistent-field calculations of hyperfine coupling constants , 1992 .

[25]  Trygve Helgaker,et al.  Efficient parallel implementation of response theory: Calculations of the second hyperpolarizability of polyacenes , 1996 .

[26]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[27]  Paweł Sałek,et al.  Assessment of a Coulomb-attenuated exchange-correlation energy functional. , 2006, Physical chemistry chemical physics : PCCP.

[28]  Trygve Helgaker,et al.  Analytical calculation of nuclear magnetic resonance indirect spin–spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory , 2000 .

[29]  Jacob Kongsted,et al.  Excited States in Solution through Polarizable Embedding , 2010 .

[30]  H. Ågren,et al.  Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin–orbit Hamiltonian , 1999 .

[31]  T. Helgaker,et al.  Automated calculation of fundamental frequencies: Application to AlH3 using the coupled-cluster singles-and-doubles with perturbative triples method , 2003 .

[32]  Patrick Norman,et al.  Non-linear electric and magnetic properties obtained from cubic response functions in the random phase approximation , 1996 .

[33]  Thomas Kjærgaard,et al.  MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. , 2012, Physical chemistry chemical physics : PCCP.

[34]  Thomas Kjærgaard,et al.  Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. , 2012, The Journal of chemical physics.

[35]  Zilvinas Rinkevicius,et al.  Density functional theory for hyperfine coupling constants with the restricted-unrestricted approach. , 2004, The Journal of chemical physics.

[36]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[37]  P. Åstrand,et al.  Calculation of the vibrational wave function of polyatomic molecules , 2000 .

[38]  D. M. Bishop,et al.  Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations , 2001 .

[39]  J. Olsen,et al.  Ab initio calculation of electronic circular dichroism fortrans-cyclooctene using London atomic orbitals , 1995 .

[40]  D. Tew,et al.  Quintuple-zeta quality coupled-cluster correlation energies with triple-zeta basis sets. , 2007, Physical chemistry chemical physics : PCCP.

[41]  R. Cimiraglia,et al.  Calibration of the n-electron valence state perturbation theory approach. , 2004, The Journal of chemical physics.

[42]  Trygve Helgaker,et al.  Nuclear shielding constants by density functional theory with gauge including atomic orbitals , 2000 .

[43]  Jacob Kongsted,et al.  The polarizable embedding coupled cluster method. , 2011, Journal of Chemical Physics.

[44]  H. Ågren,et al.  Excited state structures and vibronic spectra of H2CO+, HDCO+, and D2CO+ using molecular gradient and Hessian techniques , 1991 .

[45]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[46]  D. M. Bishop,et al.  Nonlinear response theory with relaxation: the first-order hyperpolarizability. , 2005, The Journal of chemical physics.

[47]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[48]  Kurt V. Mikkelsen,et al.  A multiconfiguration self‐consistent reaction field response method , 1994 .

[49]  Georg Kresse,et al.  Making the random phase approximation to electronic correlation accurate. , 2009, The Journal of chemical physics.

[50]  Zilvinas Rinkevicius,et al.  Time-dependent density functional theory with the generalized restricted-unrestricted approach. , 2006, The Journal of chemical physics.

[51]  Hans Ågren,et al.  Efficient optimization of large scale MCSCF wave functions with a restricted step algorithm , 1987 .

[52]  J. Olsen,et al.  Vibrational Raman optical activity calculations using London atomic orbitals , 1994 .

[53]  Trygve Helgaker,et al.  An efficient density-functional-theory force evaluation for large molecular systems. , 2010, The Journal of chemical physics.

[54]  Poul Jørgensen,et al.  On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations. , 2011, Journal of chemical theory and computation.

[55]  Trygve Helgaker,et al.  A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model , 1994 .

[56]  H. Ågren,et al.  Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters , 1994 .

[57]  Trygve Helgaker,et al.  Systematic determination of MCSCF equilibrium and transition structures and reaction paths , 1986 .

[58]  T. Helgaker,et al.  The calculation of indirect nuclear spin-spin coupling constants in large molecules. , 2004, Chemistry.

[59]  Jeppe Olsen,et al.  SIRIUS: A General Purpose Direct Second Order MCSCF Program , 1989 .

[60]  Ž. Rinkevičius,et al.  General excitations in time-dependent density functional theory. , 2007, The Journal of chemical physics.

[61]  Kenneth G. Dyall,et al.  The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function , 1995 .

[62]  Trygve Helgaker,et al.  A Lagrangian, integral-density direct formulation and implementation of the analytic CCSD and CCSD(T) gradients , 2003 .

[63]  Kurt V. Mikkelsen,et al.  The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories , 2002 .

[64]  T. Enevoldsen,et al.  Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD) , 1998 .

[65]  Patrick Norman,et al.  Electronic circular dichroism spectra from the complex polarization propagator. , 2007, The Journal of chemical physics.

[66]  K. Mikkelsen,et al.  Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation , 1999 .

[67]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[68]  P. Jørgensen,et al.  Frequency-dependent second hyperpolarizabilities using coupled cluster cubic response theory , 1998 .

[69]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[70]  H. Ågren,et al.  Ab initio calculations of zero-field splitting parameters , 2002 .

[71]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[72]  Kristian O. Sylvester-Hvid,et al.  Nonlinear optical response of molecules in a nonequilibrium solvation model , 1998 .

[73]  Trygve Helgaker,et al.  Optical rotation studied by density-functional and coupled-cluster methods , 2002 .

[74]  Paweł Sałek,et al.  Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. , 2004, The Journal of chemical physics.

[75]  Keld L. Bak,et al.  The vibrational g-factor of dihydrogen from theoretical calculation and analysis of vibration-rotational spectra. , 2005, Physical chemistry chemical physics : PCCP.

[76]  H. Ågren,et al.  Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory , 1992 .

[77]  P. Jørgensen,et al.  First-order one-electron properties in the integral-direct coupled cluster singles and doubles model , 1997 .

[78]  Poul Jørgensen,et al.  Quasienergy formulation of damped response theory. , 2009, The Journal of chemical physics.

[79]  H. Ågren,et al.  An efficient method for the calculation of generalized overlap amplitudes for core photoelectron shake-up spectra , 1987 .

[80]  Kenneth Ruud,et al.  A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. , 2008, The Journal of chemical physics.

[81]  Hans Ågren,et al.  A direct, restricted-step, second-order MC SCF program for large scale ab initio calculations , 1986 .

[82]  K. Ruud,et al.  Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism , 1993 .

[83]  T. Helgaker,et al.  Communication: Analytic gradients in the random-phase approximation. , 2013, The Journal of chemical physics.

[84]  Martin J. Packer,et al.  A new implementation of the second‐order polarization propagator approximation (SOPPA): The excitation spectra of benzene and naphthalene , 1996 .

[85]  H. Ågren,et al.  Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model. , 2005, The Journal of chemical physics.

[86]  Trygve Helgaker,et al.  Analytical calculation of MCSCF dipole‐moment derivatives , 1986 .

[87]  P. Åstrand,et al.  An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules , 2000 .

[88]  Yi Luo,et al.  Density functional response theory calculations of three-photon absorption. , 2004, The Journal of chemical physics.

[89]  H. Koch,et al.  Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties , 1998 .

[90]  Kurt V. Mikkelsen,et al.  On the importance of excited state dynamic response electron correlation in polarizable embedding methods , 2012, J. Comput. Chem..

[91]  Poul Jørgensen,et al.  Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies , 1996 .

[92]  Branislav Jansík,et al.  Linear scaling coupled cluster method with correlation energy based error control. , 2010, The Journal of chemical physics.

[93]  Trygve Helgaker,et al.  Molecular Hessians for large‐scale MCSCF wave functions , 1986 .

[94]  P. Jørgensen,et al.  An Atomic-Orbital-Based Lagrangian Approach for Calculating Geometric Gradients of Linear Response Properties , 2010 .

[95]  A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. , 2004, The Journal of chemical physics.

[96]  Poul Jørgensen,et al.  Trust Region Minimization of Orbital Localization Functions. , 2012, Journal of chemical theory and computation.

[97]  H. Ågren,et al.  Response theory calculations of two-photon circular dichroism , 2005 .

[98]  Ove Christiansen,et al.  A SECOND-ORDER DOUBLES CORRECTION TO EXCITATION ENERGIES IN THE RANDOM-PHASE APPROXIMATION , 1998 .

[99]  K. Mikkelsen,et al.  A CC2 dielectric continuum model and a CC2 molecular mechanics model , 2003 .

[100]  P. Jørgensen,et al.  Multiconfigurational quadratic response theory calculations of two-photon electronic transition probabilities of H2O , 1993 .

[101]  Trygve Helgaker,et al.  Recent advances in wave function-based methods of molecular-property calculations. , 2012, Chemical reviews.

[102]  O. Christiansen,et al.  Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules , 2012 .

[103]  Kurt V. Mikkelsen,et al.  Molecular Response Method for Solvated Molecules in Nonequilibrium Solvation , 1996 .

[104]  Trygve Helgaker,et al.  Integration of the classical equations of motion on ab initio molecular potential energy surfaces using gradients and Hessians: application to translational energy release upon fragmentation , 1990 .

[105]  T. Helgaker Transition-state optimizations by trust-region image minimization , 1991 .

[106]  K. Uvdal,et al.  A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study , 2012, Journal of Nanoparticle Research.

[107]  P. Jørgensen,et al.  Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory , 1997 .

[108]  P. Jørgensen,et al.  Gauge-Origin Independent Formulation and Implementation of Magneto-Optical Activity within Atomic-Orbital-Density Based Hartree-Fock and Kohn-Sham Response Theories. , 2009, Journal of chemical theory and computation.

[109]  Trygve Helgaker,et al.  Excitation energies in density functional theory: an evaluation and a diagnostic test. , 2008, The Journal of chemical physics.

[110]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[111]  K. Mikkelsen,et al.  Theory of hyperfine coupling constants of solvated molecules: Applications involving methyl and ClO2 radicals in different solvents , 1996 .

[112]  Kenneth Ruud,et al.  Superlinear scaling in master‐slave quantum chemical calculations using in‐core storage of two‐electron integrals , 2006, J. Comput. Chem..

[113]  S. Knecht,et al.  Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+. , 2008, The Journal of chemical physics.

[114]  H. Ågren,et al.  Calculations of two-photon absorption cross sections by means of density-functional theory , 2003 .

[115]  Trygve Helgaker,et al.  Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals , 1994 .

[116]  Ove Christiansen,et al.  Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene , 2000 .

[117]  T. Helgaker,et al.  Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12exp(−γr122) , 2002 .

[118]  P. Jørgensen,et al.  Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon , 1998 .

[119]  J. Olsen,et al.  Spin–orbit coupling constants in a multiconfiguration linear response approach , 1992 .

[120]  P. Jørgensen,et al.  Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene , 1996 .

[121]  H. Ågren,et al.  Natural circular dichroism in non-resonant x-ray emission , 1997 .

[122]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[123]  H. Ågren,et al.  Resonance enhanced Raman scattering from the complex electric-dipole polarizability : A theoretical study on N-2 , 2009 .

[124]  Thomas Fransson,et al.  Asymmetric-Lanczos-Chain-Driven Implementation of Electronic Resonance Convergent Coupled-Cluster Linear Response Theory. , 2012, Journal of chemical theory and computation.

[125]  Thomas Bondo Pedersen,et al.  Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. , 2004, The Journal of chemical physics.

[126]  H. Ågren,et al.  Polarization propagator for x-ray spectra. , 2006, Physical review letters.

[127]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[128]  J. Gauss,et al.  Perturbation‐dependent atomic orbitals for the calculation of spin‐rotation constants and rotational g tensors , 1996 .

[129]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[130]  J. Olsen,et al.  Quadratic response functions for a multiconfigurational self‐consistent field wave function , 1992 .

[131]  Vladimir V. Rybkin,et al.  Insights into the dynamics of evaporation and proton migration in protonated water clusters from Large‐scale Born–Oppenheimer direct dynamics , 2013, J. Comput. Chem..

[132]  Jeppe Olsen,et al.  Second‐order Mo/ller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self‐consistent field calculations , 1988 .

[133]  Trygve Helgaker,et al.  A multiconfigurational self‐consistent reaction‐field method , 1988 .

[134]  Yi Luo,et al.  Response theory for static and dynamic polarizabilities of excited states , 1996 .

[135]  H. Ågren,et al.  Geometry optimization of core electron excited molecules , 1997 .

[136]  Trygve Helgaker,et al.  The efficient optimization of molecular geometries using redundant internal coordinates , 2002 .

[137]  O. Christiansen,et al.  Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory , 1998 .

[138]  Thomas Bondo Pedersen,et al.  Coupled cluster response functions revisited , 1997 .

[139]  K. Mikkelsen,et al.  A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules , 1997 .

[140]  T. Helgaker,et al.  Parity-violating interaction in H2O2 calculated from density-functional theory , 2002 .

[141]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .

[142]  Paweł Sałek,et al.  Cubic response functions in time-dependent density functional theory. , 2005, The Journal of chemical physics.

[143]  Trygve Helgaker,et al.  The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. , 2008, The Journal of chemical physics.

[144]  H. Ågren,et al.  Ab initio study of the circular intensity difference in electric-field-induced second harmonic generation of chiral natural amino acids. , 2013, Physical chemistry chemical physics : PCCP.

[145]  A. M. Teale,et al.  Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity. , 2008, The Journal of chemical physics.

[146]  H. Ågren,et al.  Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas–Kroll, and Dirac–Hartree–Fock response theory , 2002 .

[147]  J. Olsen,et al.  Erratum: Second‐order Mo/ller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self‐consistent‐field calculations [J. Chem. Phys. 88, 3834 (1988)] , 1988 .

[148]  Patrick Norman,et al.  CUBIC RESPONSE FUNCTIONS IN THE MULTICONFIGURATION SELF-CONSISTENT FIELD APPROXIMATION , 1996 .

[149]  H. Ågren,et al.  Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation , 1995 .

[150]  Olav Vahtras,et al.  Ab initio calculations of electronic g-factors by means of multiconfiguration response theory , 1997 .

[151]  Paweł Sałek,et al.  Linear-scaling implementation of molecular electronic self-consistent field theory. , 2007, The Journal of chemical physics.

[152]  J. Olsen,et al.  Multiconfigurational quadratic response functions for singlet and triplet perturbations: The phosphorescence lifetime of formaldehyde , 1992 .

[153]  Jacopo Tomasi,et al.  A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation , 2002 .