Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions
暂无分享,去创建一个
[1] J. Goodman. Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .
[2] R. Rubinstein,et al. On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..
[3] B. Hobbs,et al. Linear Complementarity Models of Nash-Cournot Competition in Bilateral and POOLCO Power Markets , 2001, IEEE Power Engineering Review.
[4] Liping Zhang,et al. Unconstrained optimization reformulations of equilibrium problems , 2009 .
[5] Masao Fukushima,et al. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..
[6] Michal Kočvara,et al. Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .
[7] O. Mangasarian. On Concepts of Directional Differentiability , 2004 .
[8] P. Harker. Generalized Nash games and quasi-variational inequalities , 1991 .
[9] B. Kummer. Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .
[10] Georgia Perakis,et al. Dynamic Pricing and Inventory Control: Uncertainty and Competition , 2010, Oper. Res..
[11] Stan Uryasev,et al. Relaxation algorithms to find Nash equilibria with economic applications , 2000 .
[12] R. Mifflin. Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .
[13] J. Krawczyk,et al. Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.
[14] H. Nikaidô,et al. Note on non-cooperative convex game , 1955 .
[15] H. Rademacher. Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale , 1919 .
[16] Ji-Ming Peng,et al. Equivalence of variational inequality problems to unconstrained minimization , 1997, Math. Program..
[17] M. Raydan. On the Barzilai and Borwein choice of steplength for the gradient method , 1993 .
[18] Liqun Qi,et al. Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..
[19] Sjur Didrik Flåm,et al. Noncooperative Convex Games: Computing Equilibrium by Partial Regularization , 1994 .
[20] Luigi Grippo,et al. Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method , 2002, Comput. Optim. Appl..
[21] Gül Gürkan,et al. Approximations of Nash equilibria , 2008, Math. Program..
[22] Sjur Didrik Flåm,et al. Equilibrium programming using proximal-like algorithms , 1997, Math. Program..
[23] Jacek B. Krawczyk,et al. Coupled constraint Nash equilibria in environmental games , 2005 .
[24] L. Liao,et al. R-linear convergence of the Barzilai and Borwein gradient method , 2002 .
[25] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .
[26] A. Bensoussan. Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .
[27] Masao Fukushima,et al. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..
[28] Defeng Sun,et al. A further result on an implicit function theorem for locally Lipschitz functions , 2001, Oper. Res. Lett..
[29] Jong-Shi Pang,et al. Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..
[30] B. Kummer. NEWTON's METHOD FOR NON-DIFFERENTIABLE FUNCTIONS , 1988, Advances in Mathematical Optimization.
[31] Masao Fukushima,et al. Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities , 1998, Math. Program..
[32] Jiming Liu. Strong Stability in Variational Inequalities , 1995 .
[33] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[34] Stephen M. Robinson,et al. Strongly Regular Generalized Equations , 1980, Math. Oper. Res..
[35] Francisco Facchinei,et al. Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..
[36] Marcos Raydan,et al. The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..
[37] T. Basar,et al. Relaxation techniques and asynchronous algorithms for on-line computation of noncooperative equilibria , 1987, 26th IEEE Conference on Decision and Control.
[38] Roger Fletcher,et al. On the Barzilai-Borwein Method , 2005 .
[39] Andreas Fischer,et al. On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..
[40] J. Hiriart-Urruty,et al. Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .
[41] Liqun Qi,et al. A nonsmooth version of Newton's method , 1993, Math. Program..
[42] Giandomenico Mastroeni,et al. Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..
[43] Defeng Sun,et al. Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..
[44] KanzowChristian,et al. Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009 .
[45] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[46] W. Hogan. Point-to-Set Maps in Mathematical Programming , 1973 .
[47] K. Taji,et al. Unconstrained Optimization Reformulations of Variational Inequality Problems , 1997 .
[48] Tamer Basar,et al. Distributed algorithms for the computation of noncooperative equilibria , 1987, Autom..
[49] Francisco Facchinei,et al. Regularity Properties of a Semismooth Reformulation of Variational Inequalities , 1998, SIAM J. Optim..
[50] M. Seetharama Gowda,et al. Inverse and implicit function theorems for H-differentiable and semismooth functions , 2004, Optim. Methods Softw..