Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions

Abstract We consider the generalized Nash equilibrium problem which, in contrast to the standard Nash equilibrium problem, allows joint constraints of all players involved in the game. Using a regularized Nikaido-Isoda-function, we then present three optimization problems related to the generalized Nash equilibrium problem. The first optimization problem is a complete reformulation of the generalized Nash game in the sense that the global minima are precisely the solutions of the game. However, this reformulation is nonsmooth. We then modify this approach and obtain a smooth constrained optimization problem whose global minima correspond to so-called normalized Nash equilibria. The third approach uses the difference of two regularized Nikaido-Isoda-functions in order to get a smooth unconstrained optimization problem whose global minima are, once again, precisely the normalized Nash equilibria. Conditions for stationary points to be global minima of the two smooth optimization problems are also given. Some numerical results illustrate the behaviour of our approaches.

[1]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .

[2]  R. Rubinstein,et al.  On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..

[3]  B. Hobbs,et al.  Linear Complementarity Models of Nash-Cournot Competition in Bilateral and POOLCO Power Markets , 2001, IEEE Power Engineering Review.

[4]  Liping Zhang,et al.  Unconstrained optimization reformulations of equilibrium problems , 2009 .

[5]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[6]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[7]  O. Mangasarian On Concepts of Directional Differentiability , 2004 .

[8]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[9]  B. Kummer Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .

[10]  Georgia Perakis,et al.  Dynamic Pricing and Inventory Control: Uncertainty and Competition , 2010, Oper. Res..

[11]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[12]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[13]  J. Krawczyk,et al.  Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.

[14]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[15]  H. Rademacher Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale , 1919 .

[16]  Ji-Ming Peng,et al.  Equivalence of variational inequality problems to unconstrained minimization , 1997, Math. Program..

[17]  M. Raydan On the Barzilai and Borwein choice of steplength for the gradient method , 1993 .

[18]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[19]  Sjur Didrik Flåm,et al.  Noncooperative Convex Games: Computing Equilibrium by Partial Regularization , 1994 .

[20]  Luigi Grippo,et al.  Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method , 2002, Comput. Optim. Appl..

[21]  Gül Gürkan,et al.  Approximations of Nash equilibria , 2008, Math. Program..

[22]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[23]  Jacek B. Krawczyk,et al.  Coupled constraint Nash equilibria in environmental games , 2005 .

[24]  L. Liao,et al.  R-linear convergence of the Barzilai and Borwein gradient method , 2002 .

[25]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[26]  A. Bensoussan Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .

[27]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[28]  Defeng Sun,et al.  A further result on an implicit function theorem for locally Lipschitz functions , 2001, Oper. Res. Lett..

[29]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[30]  B. Kummer NEWTON's METHOD FOR NON-DIFFERENTIABLE FUNCTIONS , 1988, Advances in Mathematical Optimization.

[31]  Masao Fukushima,et al.  Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities , 1998, Math. Program..

[32]  Jiming Liu Strong Stability in Variational Inequalities , 1995 .

[33]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[34]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[35]  Francisco Facchinei,et al.  Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..

[36]  Marcos Raydan,et al.  The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..

[37]  T. Basar,et al.  Relaxation techniques and asynchronous algorithms for on-line computation of noncooperative equilibria , 1987, 26th IEEE Conference on Decision and Control.

[38]  Roger Fletcher,et al.  On the Barzilai-Borwein Method , 2005 .

[39]  Andreas Fischer,et al.  On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..

[40]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[41]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[42]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[43]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..

[44]  KanzowChristian,et al.  Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009 .

[45]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[46]  W. Hogan Point-to-Set Maps in Mathematical Programming , 1973 .

[47]  K. Taji,et al.  Unconstrained Optimization Reformulations of Variational Inequality Problems , 1997 .

[48]  Tamer Basar,et al.  Distributed algorithms for the computation of noncooperative equilibria , 1987, Autom..

[49]  Francisco Facchinei,et al.  Regularity Properties of a Semismooth Reformulation of Variational Inequalities , 1998, SIAM J. Optim..

[50]  M. Seetharama Gowda,et al.  Inverse and implicit function theorems for H-differentiable and semismooth functions , 2004, Optim. Methods Softw..