Basis-neutral Hilbert-space analyzers

Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  W. Marsden I and J , 2012 .

[3]  George K. Atia,et al.  Efficient modal analysis using compressive optical interferometry. , 2015, Optics express.

[4]  E. Verstegen,et al.  Orbital angular momentum analysis of high-dimensional entanglement , 2007 .

[5]  R. W. Boyd,et al.  Radial quantum number of Laguerre-Gauss modes , 2014, 1401.4985.

[6]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[7]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[8]  B. Saleh,et al.  Optical coherency matrix tomography , 2015, Scientific Reports.

[9]  O. Shapira,et al.  Complete modal decomposition for optical waveguides , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[10]  Andrew Forbes,et al.  Efficient sorting of Bessel beams. , 2013, Optics express.

[11]  Ebrahim Karimi,et al.  Radial coherent and intelligent states of paraxial wave equation. , 2012, Optics letters.

[12]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[13]  R H Ginsberg,et al.  Image rotation. , 1994, Applied optics.

[14]  Andrew Forbes,et al.  Creation and detection of optical modes with spatial light modulators , 2016 .

[15]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[16]  A. Aspect,et al.  A New Light on Single Photon Interferences , 1986 .

[17]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[18]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[19]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[20]  V. Namias,et al.  Fractionalization of Hankel Transforms , 1980 .

[21]  Anton Zeilinger,et al.  The Forgotten Quantum Number: A short note on the radial modes of Laguerre-Gauss beams , 2013 .

[22]  Thomas Jennewein,et al.  How to create and detect N-dimensional entangled photons with an active phase hologram , 2007, 0707.0061.

[23]  Edwin L. Thomas,et al.  Periodic materials and interference lithography : for photonics, phononics and mechanics , 2009 .

[24]  Mario Krenn,et al.  Physical meaning of the radial index of Laguerre-Gauss beams , 2015, 2017 Conference on Lasers and Electro-Optics (CLEO).

[25]  D Mendlovic,et al.  Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters. , 1998, Applied optics.

[26]  Nahum S. Kipnis Book Reviews - ISIS: History of the Principle of Interference of Light , 1990 .

[27]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[28]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[29]  B. Saleh,et al.  Bell's measure in classical optical coherence , 2012, Nature Photonics.

[30]  B. Saleh,et al.  Angular and radial mode analyzer for optical beams. , 2011, Optics letters.

[31]  Geoffrey Ingram Taylor,et al.  Interference Fringes with Feeble Light , 1983 .

[32]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[33]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[34]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[35]  Timothy M. Yarnall,et al.  Phase-unlocked Hong-Ou-Mandel interferometry , 2013 .

[36]  J W Nicholson,et al.  Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. , 2008, Optics express.

[37]  José A Rodrigo,et al.  Programmable two-dimensional optical fractional Fourier processor. , 2009, Optics express.

[38]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[39]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[40]  K. Toussaint,et al.  Harnessing randomness to control the polarization of light transmitted through highly scattering media. , 2014, Optics express.

[41]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[42]  B. Saleh,et al.  Generalized optical interferometry for modal analysis in arbitrary degrees of freedom. , 2012, Optics letters.

[43]  Deriving the integral representation of a fractional Hankel transform from a fractional Fourier transform. , 1998, Optics letters.

[44]  P. Grangier,et al.  Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences , 1986 .

[45]  Kishan Dholakia,et al.  Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum , 2012 .

[46]  S. Ferrari,et al.  Author contributions , 2021 .

[47]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[48]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[49]  Jonathan Leach,et al.  Direct measurement of a 27-dimensional orbital-angular-momentum state vector , 2013, Nature Communications.

[50]  Andrew Forbes,et al.  Revealing the radial modes in vortex beams. , 2016, Applied optics.

[51]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .