Uncovering a generalised gamma distribution: from shape to interpretation

In this paper, we introduce the flexible interpretable gamma (FIG) distribution which has been derived by Weibullisation of the body-tail generalised normal distribution. The parameters of the FIG have been verified graphically and mathematically as having interpretable roles in controlling the left-tail, body, and right-tail shape. The generalised gamma (GG) distribution has become a staple model for positive data in statistics due to its interpretable parameters and tractable equations. Although there are many generalised forms of the GG which can provide better fit to data, none of them extend the GG so that the parameters are interpretable. Additionally, we present some mathematical characteristics and prove the identifiability of the FIG parameters. Finally, we apply the FIG model to hand grip strength and insurance loss data to assess its flexibility relative to existing models.

[1]  Awad A. Bakery,et al.  A New Double Truncated Generalized Gamma Model with Some Applications , 2021, Journal of Mathematics.

[2]  Gauss M. Cordeiro,et al.  The Kummer Beta Generalized Gamma Distribution , 2021 .

[3]  Christophe Ley,et al.  Flexible Models for Complex Data with Applications , 2021 .

[4]  Gauss M. Cordeiro,et al.  The Transmuted Generalized Gamma Distribution: Properties and Application , 2021, Journal of Data Science.

[5]  F. Louzada,et al.  Bayesian analysis of the inverse generalized gamma distribution using objective priors , 2021 .

[6]  Giorgio Kaniadakis New power-law tailed distributions emerging in κ-statistics , 2021, EPL (Europhysics Letters).

[7]  L. Bagnato,et al.  The multivariate tail-inflated normal distribution and its application in finance , 2020, 2006.12180.

[8]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[9]  H. Saieed,et al.  Inverse Generalized Gamma Distribution with it's properties , 2020, IRAQI JOURNAL OF STATISTICAL SCIENCES.

[10]  S. Abid,et al.  The Generalized Gamma – Exponentiated Weibull Distribution with its Properties , 2020 .

[11]  Mohammad Arashi,et al.  Mastering the Body and Tail Shape of a Distribution , 2019, Mathematics.

[12]  A. Yadav The Inverted Exponentiated Gamma Distribution: A Heavy-Tailed Model with Upside Down Bathtub Shaped Hazard Rate , 2019 .

[13]  Filipe J. Marques,et al.  The ratio of independent generalized gamma random variables with applications , 2019, Comput. Math. Methods.

[14]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[15]  Gladys D. C. Barriga,et al.  The Marshall-Olkin generalized gamma distribution , 2018, Communications for Statistical Applications and Methods.

[16]  F. A. Borotto,et al.  A newκ-deformed parametric model for the size distribution of wealth , 2018, Physica A: Statistical Mechanics and its Applications.

[17]  Sanku Dey,et al.  A Generalization of Generalized Gamma Distributions , 2018 .

[18]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[19]  Andriëtte Bekker,et al.  A gamma-mixture class of distributions with Bayesian application , 2017, Commun. Stat. Simul. Comput..

[20]  Shouquan Chen,et al.  Asymptotic properties for distributions and densities of extremes from generalized gamma distribution , 2016 .

[21]  Gauss M. Cordeiro,et al.  A new generalized gamma distribution with applications , 2015 .

[22]  M. C. Jones On Families of Distributions with Shape Parameters , 2015 .

[23]  B. Oluyede,et al.  THEORETICAL PROPERTIES OF THE WEIGHTED GENERALIZED GAMMA AND RELATED DISTRIBUTIONS , 2015, Probability in the Engineering and Informational Sciences.

[24]  M. E. Mead,et al.  Generalized Inverse Gamma Distribution and its Application in Reliability , 2015 .

[25]  Christophe Ley Flexible Modelling in Statistics: Past, present and Future , 2014, 1409.6219.

[26]  G. Cordeiro,et al.  The beta generalized gamma distribution , 2013 .

[27]  George K. Karagiannidis,et al.  Novel Approximations to the Statistics of Products of Independent Random Variables and Their Applications in Wireless Communications , 2012, IEEE Transactions on Vehicular Technology.

[28]  Saralees Nadarajah,et al.  An extension of the exponential distribution , 2011 .

[29]  Gauss M. Cordeiro,et al.  The Kumaraswamy generalized gamma distribution with application in survival analysis , 2011 .

[30]  Gauss M. Cordeiro,et al.  The exponentiated generalized gamma distribution with application to lifetime data , 2011 .

[31]  John D. Lees-Miller,et al.  Theoretical Maximum Capacity as Benchmark for Empty Vehicle Redistribution in Personal Rapid Transit , 2010 .

[32]  David M. Rocke,et al.  Analysis of MALDI FT-ICR mass spectrometry data: a time series approach. , 2009, Analytica chimica acta.

[33]  Narayanaswamy Balakrishnan,et al.  On families of beta- and generalized gamma-generated distributions and associated inference , 2009 .

[34]  R. S. Kaler,et al.  On the performance analysis of wireless receiver using generalized-gamma fading model , 2009, Ann. des Télécommunications.

[35]  S. Nadarajah,et al.  Generalized gamma variables with drought application , 2008 .

[36]  Saralees Nadarajah,et al.  A generalized gamma distribution with application to drought data , 2007, Math. Comput. Simul..

[37]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[38]  Eric R. Ziegel,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2004, Technometrics.

[39]  Ryuichi Kaneko,et al.  Elaboration of the Coale-McNeil Nuptiality Model as the Generalized Log Gamma Distribution: A New Identity and Empirical Enhancements , 2003 .

[40]  S. Agarwal,et al.  GENERALIZED GAMMA TYPE DISTRIBUTION AND ITS HAZARD RATE FUNCTION , 2001 .

[41]  Shyam L. Kalla,et al.  A unified form of gamma-type distributions , 2001, Appl. Math. Comput..

[42]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[43]  James B. McDonald,et al.  A generalization of the beta distribution with applications , 1995 .

[44]  M. Lee,et al.  Lifetime distributions under unknown environment , 1991 .

[45]  Kazuya Kobayashi,et al.  On Generalized Gamma Functions Occurring in Diffraction Theory , 1991 .

[46]  T. Pham-Gia,et al.  The generalized beta- and F-distributions in statistical modelling , 1989 .

[47]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .

[48]  J. L. Folks,et al.  The Inverse Gaussian Distribution and its Statistical Application—A Review , 1978 .

[49]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[50]  H. Akaike A new look at the statistical model identification , 1974 .

[51]  R. Prentice A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .

[52]  S. Kotz,et al.  Power transformations of gamma variables , 1972 .

[53]  P. Consul,et al.  On the log-gamma distribution and its properties , 1971 .

[54]  H. J. Malik,et al.  Exact Distribution of the Quotient of Independent Generalized Gamma Variables , 1967, Canadian Mathematical Bulletin.

[55]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[56]  M. Tweedie Statistical Properties of Inverse Gaussian Distributions. II , 1957 .

[57]  L. Amoroso,et al.  Ricerche intorno alla curva dei redditi , 1925 .

[58]  Emrah Altun,et al.  The extended gamma distribution with regression model and applications , 2021, AIMS Mathematics.

[59]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[60]  A. Bekker,et al.  Densities of composite Weibullized generalized gamma variables : theory and methods , 2010 .

[61]  Constantine Kotropoulos,et al.  Phonemic segmentation using the generalised Gamma distribution and small sample Bayesian information criterion , 2008, Speech Commun..

[62]  Dr A. Alavi,et al.  Statistical Mechanics and its applications , 2007 .

[63]  L. Bachelier Louis Bachelier's Theory of Speculation: The Origins of Modern Finance , 2006 .

[64]  Adrian Bowman,et al.  Generalized additive models for location, scale and shape - Discussion , 2005 .

[65]  Shyam L. Kalla,et al.  A generalized gamma distribution and its application in reliabilty , 1996 .

[66]  Bradley M. Bell,et al.  Generalized gamma parameter estimation and moment evaluation , 1988 .

[67]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[68]  Annali di matematica pura e applicata , 1893 .

[69]  Francis Galton F.R.S. IV. Statistics by intercomparison, with remarks on the law of frequency of error , 1875 .