Memristor Circuits: Flux—Charge Analysis Method

Memristor-based circuits are widely exploited to realize analog and/or digital systems for a broad scope of applications (e.g., amplifiers, filters, oscillators, logic gates, and memristor as synapses). A systematic methodology is necessary to understand complex nonlinear phenomena emerging in memristor circuits. The manuscript introduces a comprehensive analysis method of memristor circuits in the flux-charge (φ, q)-domain. The proposed method relies on Kirchhoff Flux and Charge Laws and constitutive relations of circuit elements in terms of incremental flux and charge. The main advantages (over the approaches in the voltage-current (v, i)-domain) of the formulation of circuit equations in the (φ, q)-domain are: a) a simplified analysis of nonlinear dynamics and bifurcations by means of a smaller set of ODEs; b) a clear understanding of the influence of initial conditions. The straightforward application of the proposed method provides a full portrait of the nonlinear dynamics of the simplest memristor circuit made of one memristor connected to a capacitor. In addition, the concept of invariant manifolds permits to clarify how initial conditions give rise to bifurcations without parameters.

[1]  L. Chua Memristor-The missing circuit element , 1971 .

[2]  L. Chua Dynamic nonlinear networks: State-of-the-art , 1980 .

[3]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[4]  J. Alexander,et al.  Generic Hopf Bifurcation from Lines of Equilibria without Parameters: I. Theory☆ , 2000 .

[5]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[6]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[7]  Marcelo Messias,et al.  Hopf bifurcation from Lines of Equilibria without Parameters in Memristor oscillators , 2010, Int. J. Bifurc. Chaos.

[8]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[9]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[10]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[11]  Ricardo Riaza,et al.  Semistate models of electrical circuits including memristors , 2011, Int. J. Circuit Theory Appl..

[12]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[13]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[14]  Fernando Corinto,et al.  Nonlinear Dynamics of Memristor Oscillators , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Ricardo Riaza,et al.  Manifolds of Equilibria and Bifurcations without Parameters in Memristive Circuits , 2012, SIAM J. Appl. Math..

[16]  Fernando Corinto,et al.  Analysis of current–voltage characteristics for memristive elements in pattern recognition systems , 2012, Int. J. Circuit Theory Appl..

[17]  Fernando Corinto,et al.  Memristor Models in a Chaotic Neural Circuit , 2013, Int. J. Bifurc. Chaos.

[18]  Ricardo Riaza,et al.  DAEs in Circuit Modelling: A Survey , 2013 .

[19]  A LeonO.EtAl.Chu,et al.  Linear and nonlinear circuits , 2014 .

[20]  Marcelo Messias,et al.  Bifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillator , 2014, Int. J. Bifurc. Chaos.

[21]  Guang Zeng,et al.  Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation , 2014, Int. J. Circuit Theory Appl..

[22]  Leon O. Chua,et al.  Dynamic Behavior of Coupled Memristor Circuits , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Leon O. Chua,et al.  A Theoretical Approach to Memristor Devices , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[24]  Ronald Tetzlaff,et al.  Nonlinear Dynamics of a Locally-Active Memristor , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Simone Balatti,et al.  A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems , 2015, Front. Neurosci..

[26]  Sundarapandian Vaidyanathan,et al.  A novel memristive time–delay chaotic system without equilibrium points , 2016 .