Intrinsic Polynomials for Regression on Riemannian Manifolds

We develop a framework for polynomial regression on Riemannian manifolds. Unlike recently developed spline models on Riemannian manifolds, Riemannian polynomials offer the ability to model parametric polynomials of all integer orders, odd and even. An intrinsic adjoint method is employed to compute variations of the matching functional, and polynomial regression is accomplished using a gradient-based optimization scheme. We apply our polynomial regression framework in the context of shape analysis in Kendall shape space as well as in diffeomorphic landmark space. Our algorithm is shown to be particularly convenient in Riemannian manifolds with additional symmetry, such as Lie groups and homogeneous spaces with right or left invariant metrics. As a particularly important example, we also apply polynomial regression to time-series imaging data using a right invariant Sobolev metric on the diffeomorphism group. The results show that Riemannian polynomials provide a practical model for parametric curve regression, while offering increased flexibility over geodesics.

[1]  Naftali Raz,et al.  The influence of sex, age, and handedness on corpus callosum morphology: A meta-analysis , 1995, Psychobiology.

[2]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[3]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[4]  B. O'neill,et al.  The fundamental equations of a submersion. , 1966 .

[5]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[6]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[7]  L. Machado,et al.  Higher-order smoothing splines versus least squares problems on Riemannian manifolds , 2010 .

[8]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[9]  A. D. Lewis,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997 .

[10]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[11]  David Mumford,et al.  Sectional Curvature in Terms of the Cometric, with Applications to the Riemannian Manifolds of Landmarks , 2010, SIAM J. Imaging Sci..

[12]  Martin Styner,et al.  Shape Modeling and Analysis with Entropy-Based Particle Systems , 2007, IPMI.

[13]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[14]  F. Leite,et al.  Covariant differentiation under rolling maps , 2008 .

[15]  R. Giambò,et al.  An analytical theory for Riemannian cubic polynomials , 2002 .

[16]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[17]  P. Thomas Fletcher,et al.  Polynomial Regression on Riemannian Manifolds , 2012, ECCV.

[18]  Christopher J. Taylor,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 , 2009, Lecture Notes in Computer Science.

[19]  Darryl D. Holm,et al.  The Momentum Map Representation of Images , 2009, J. Nonlinear Sci..

[20]  Martin Styner,et al.  Intrinsic Regression Models for Manifold-Valued Data. , 2009, Journal of the American Statistical Association.

[21]  P. Thomas Fletcher,et al.  Genetic, Structural and Functional Imaging Biomarkers for Early Detection of Conversion from MCI to AD , 2012, MICCAI.

[22]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  P. Thomas Fletcher,et al.  Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds , 2012, International Journal of Computer Vision.

[24]  Rama Chellappa,et al.  Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  François-Xavier Vialard,et al.  Geodesic Regression for Image Time-Series , 2011, MICCAI.

[26]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[27]  N. Bou-Rabee,et al.  Hamilton-Pontryagin Integrators on Lie Groups , 2007 .

[28]  Ian L. Dryden,et al.  A multi-dimensional scaling approach to shape analysis , 2008 .

[29]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[30]  Vic Patrangenaru,et al.  Nonparametric Shape Analysis Methods in Glaucoma Detection , 2009 .

[31]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[32]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[33]  P. Jupp,et al.  Fitting Smooth Paths to Spherical Data , 1987 .

[34]  I. Dryden,et al.  Shape-space smoothing splines for planar landmark data , 2007 .

[35]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[36]  I. Dryden,et al.  Shape curves and geodesic modelling , 2010 .

[37]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[38]  Michael I. Miller,et al.  Transport of Relational Structures in Groups of Diffeomorphisms , 2008, Journal of Mathematical Imaging and Vision.

[39]  A. Munk,et al.  Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Discussion paper with rejoinder. , 2010 .

[40]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[41]  I. Holopainen Riemannian Geometry , 1927, Nature.

[42]  D. Kendall,et al.  The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics , 1993 .