Minimum cycle and homology bases of surface embedded graphs
暂无分享,去创建一个
[1] R. Ho. Algebraic Topology , 2022 .
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[4] Tamal K. Dey,et al. Approximating loops in a shortest homology basis from point data , 2010, SoCG '10.
[5] Leon O. Chua,et al. On optimally sparse cycle and coboundary basis for a linear graph , 1973 .
[6] Carsten Thomassen,et al. Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.
[7] David Thomas,et al. The Art in Computer Programming , 2001 .
[8] Kyle Fox. Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs , 2013, SODA.
[9] Kurt Mehlhorn,et al. Minimum cycle bases: Faster and simpler , 2009, TALG.
[10] Carsten Thomassen. Review: Jonathan L. Gross and Thomas W. Tucker, Topological graph theory , 1988 .
[11] Joseph Douglas Horton,et al. A Polynomial-Time Algorithm to Find the Shortest Cycle Basis of a Graph , 1987, SIAM J. Comput..
[12] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[13] Piotr Sankowski,et al. Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.
[14] Jeff Erickson,et al. Greedy optimal homotopy and homology generators , 2005, SODA '05.
[15] T. C. Hu,et al. Multi-Terminal Network Flows , 1961 .
[16] Sven de Vries,et al. Minimum Cycle Bases for Network Graphs , 2004, Algorithmica.
[17] Philip N. Klein,et al. Multiple-source shortest paths in planar graphs , 2005, SODA '05.
[18] Matthias Müller-Hannemann,et al. Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation , 2009, Discret. Appl. Math..
[19] Amir Nayyeri,et al. Minimum cuts and shortest non-separating cycles via homology covers , 2011, SODA '11.
[20] Kurt Mehlhorn,et al. An $\tilde{O}(m^{2}n)$ Algorithm for Minimum Cycle Basis of Graphs , 2008, Algorithmica.
[21] David Eppstein,et al. All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs , 2016, Symposium on Computational Geometry.
[22] David Eppstein,et al. Dynamic generators of topologically embedded graphs , 2002, SODA '03.
[23] Jeff Erickson. Shortest non-trivial cycles in directed surface graphs , 2011, SoCG '11.
[24] Chao Chen,et al. Annotating Simplices with a Homology Basis and Its Applications , 2011, SWAT.
[25] Glencora Borradaile,et al. Minimum cycle and homology bases of surface-embedded graphs , 2017, J. Comput. Geom..
[26] Joseph Douglas Horton,et al. A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid , 2002, SWAT.
[27] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[28] J. C. D. Pina. Applications of shortest path methods , 1995 .
[29] Kurt Mehlhorn,et al. Breaking the O(m2n) Barrier for Minimum Cycle Bases , 2009, ESA.
[30] Craig Gotsman,et al. Meshing genus-1 point clouds using discrete one-forms , 2006, Comput. Graph..
[31] Christian Wulff-Nilsen,et al. Minimum Cycle Basis and All-Pairs Min Cut of a Planar Graph in Subquadratic Time , 2009, ArXiv.
[32] Kurt Mehlhorn,et al. An Õ(mn) Algorithm for Minimum Cycle Basis of Graphs∗ , 2004 .
[33] K. Ramachandran,et al. Cycle bases of minimal measure for the structural analysis of skeletal structures by the flexibility method , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[34] Glencora Borradaile,et al. Min st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time , 2010, FOCS.
[35] Erin W. Chambers,et al. Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..
[36] Hristo Djidjev,et al. Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus , 1996, SIAM J. Discret. Math..
[37] David Hartvigsen,et al. The All-Pairs Min Cut Problem and the Minimum Cycle Basis Problem on Planar Graphs , 1994, SIAM J. Discret. Math..