Minimum cycle and homology bases of surface embedded graphs

We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the $1$-dimensional ($\mathbb{Z}_2$)-homology classes) of an undirected graph embedded on a surface. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the $1$-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic $O(n^\omega+2^{2g}n^2+m)$-time algorithm for graphs embedded on an orientable surface of genus $g$. The best known existing algorithms for surface embedded graphs are those for general graphs: an $O(m^\omega)$ time Monte Carlo algorithm and a deterministic $O(nm^2/\log n + n^2 m)$ time algorithm. For the minimum homology basis problem, we give a deterministic $O((g+b)^3 n \log n + m)$-time algorithm for graphs embedded on an orientable or non-orientable surface of genus $g$ with $b$ boundary components, assuming shortest paths are unique, improving on existing algorithms for many values of $g$ and $n$. The assumption of unique shortest paths can be avoided with high probability using randomization or deterministically by increasing the running time of the homology basis algorithm by a factor of $O(\log n)$.

[1]  R. Ho Algebraic Topology , 2022 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[4]  Tamal K. Dey,et al.  Approximating loops in a shortest homology basis from point data , 2010, SoCG '10.

[5]  Leon O. Chua,et al.  On optimally sparse cycle and coboundary basis for a linear graph , 1973 .

[6]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[7]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[8]  Kyle Fox Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs , 2013, SODA.

[9]  Kurt Mehlhorn,et al.  Minimum cycle bases: Faster and simpler , 2009, TALG.

[10]  Carsten Thomassen Review: Jonathan L. Gross and Thomas W. Tucker, Topological graph theory , 1988 .

[11]  Joseph Douglas Horton,et al.  A Polynomial-Time Algorithm to Find the Shortest Cycle Basis of a Graph , 1987, SIAM J. Comput..

[12]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[13]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[14]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[15]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[16]  Sven de Vries,et al.  Minimum Cycle Bases for Network Graphs , 2004, Algorithmica.

[17]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[18]  Matthias Müller-Hannemann,et al.  Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation , 2009, Discret. Appl. Math..

[19]  Amir Nayyeri,et al.  Minimum cuts and shortest non-separating cycles via homology covers , 2011, SODA '11.

[20]  Kurt Mehlhorn,et al.  An $\tilde{O}(m^{2}n)$ Algorithm for Minimum Cycle Basis of Graphs , 2008, Algorithmica.

[21]  David Eppstein,et al.  All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs , 2016, Symposium on Computational Geometry.

[22]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[23]  Jeff Erickson Shortest non-trivial cycles in directed surface graphs , 2011, SoCG '11.

[24]  Chao Chen,et al.  Annotating Simplices with a Homology Basis and Its Applications , 2011, SWAT.

[25]  Glencora Borradaile,et al.  Minimum cycle and homology bases of surface-embedded graphs , 2017, J. Comput. Geom..

[26]  Joseph Douglas Horton,et al.  A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid , 2002, SWAT.

[27]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[28]  J. C. D. Pina Applications of shortest path methods , 1995 .

[29]  Kurt Mehlhorn,et al.  Breaking the O(m2n) Barrier for Minimum Cycle Bases , 2009, ESA.

[30]  Craig Gotsman,et al.  Meshing genus-1 point clouds using discrete one-forms , 2006, Comput. Graph..

[31]  Christian Wulff-Nilsen,et al.  Minimum Cycle Basis and All-Pairs Min Cut of a Planar Graph in Subquadratic Time , 2009, ArXiv.

[32]  Kurt Mehlhorn,et al.  An Õ(mn) Algorithm for Minimum Cycle Basis of Graphs∗ , 2004 .

[33]  K. Ramachandran,et al.  Cycle bases of minimal measure for the structural analysis of skeletal structures by the flexibility method , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  Glencora Borradaile,et al.  Min st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time , 2010, FOCS.

[35]  Erin W. Chambers,et al.  Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..

[36]  Hristo Djidjev,et al.  Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus , 1996, SIAM J. Discret. Math..

[37]  David Hartvigsen,et al.  The All-Pairs Min Cut Problem and the Minimum Cycle Basis Problem on Planar Graphs , 1994, SIAM J. Discret. Math..