Exterior Differential Systems in Control and Robotics
暂无分享,去创建一个
John Lygeros | George J. Pappas | S. Shankar Sastry | Dawn M. Tilbury | S. Sastry | D. Tilbury | J. Lygeros
[1] J. Munkres,et al. Calculus on Manifolds , 1965 .
[2] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[3] Alberto Isidori,et al. Partial and robust linearization by feedback , 1983, The 22nd IEEE Conference on Decision and Control.
[4] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[5] A. Isidori. Nonlinear Control Systems , 1985 .
[6] R. Marino. On the largest feedback linearizable subsystem , 1986 .
[7] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[8] S. Chern,et al. Exterior Differential Systems , 1990 .
[9] Claude Samson,et al. Velocity and torque feedback control of a nonholonomic cart , 1991 .
[10] J. Lévine,et al. Sufficient conditions for dynamic state feedback linearization , 1991 .
[11] J. Munkres. Analysis On Manifolds , 1991 .
[12] P. Kokotovic,et al. Nonlinear control via approximate input-output linearization: the ball and beam example , 1992 .
[13] R. Gardner,et al. The GS algorithm for exact linearization to Brunovsky normal form , 1992 .
[14] M. Fliess,et al. Sur les systèmes non linéaires différentiellement plats , 1992 .
[15] S. Sastry,et al. Extended Goursat normal forms with applications to nonholonomic motion planning , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[16] Ole Jakob Sørdalen,et al. Conversion of the kinematics of a car with n trailers into a chained form , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.
[17] S. Shankar Sastry,et al. A Multi-Steering Trailer System: Conversion into Chained Form Using , 1994 .
[18] R. Murray,et al. Applications and extensions of Goursat normal form to control of nonlinear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[19] S. Sastry,et al. Exterior differential systems and nonholonomic motion planning , 1994 .
[20] Richard M. Murray,et al. Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..
[21] M. Fliess,et al. Flatness and defect of non-linear systems: introductory theory and examples , 1995 .
[22] D. M. Tilbury,et al. A bound on the number of integrators needed to linearize a control system , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[23] S. Shankar Sastry,et al. A multisteering trailer system: conversion into chained form using dynamic feedback , 1995, IEEE Trans. Robotics Autom..
[24] R. Murray,et al. Trajectory generation for the N-trailer problem using Goursat normal form , 1995 .
[25] S. Sastry,et al. The multi‐steering N‐trailer system: A case study of goursat normal forms and prolongations , 1995 .
[26] S. Shankar Sastry,et al. Steering Three-Input Nonholonomic Systems: The Fire Truck Example , 1995, Int. J. Robotics Res..
[27] C. Moog,et al. A linear algebraic framework for dynamic feedback linearization , 1995, IEEE Trans. Autom. Control..
[28] R. Murray,et al. A homotopy algorithm for approximating geometric distributions by integrable systems , 1996 .