Mutual Information-Based Visual Servoing

In this paper, we propose a new information theoretic approach to achieve visual servoing directly utilizing the information (as defined by Shannon) contained in the images. A metric derived from information theory, i.e., mutual information, is considered. Mutual information is widely used in multimodal image registration since it is insensitive to changes in the lighting condition and to a wide class of nonlinear image transformations. In this paper, mutual information is used as a new visual feature for visual servoing, which allows us to build a new control law that can control the six degrees of freedom (DOF) of a robot. Among various advantages, this approach requires no matching or tracking step, is robust to large illumination variations, and allows the consideration of different image modalities within the same task. Experiments on a real robot demonstrate the efficiency of the proposed visual-servoing approach.

[1]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[2]  D. W. Scott On optimal and data based histograms , 1979 .

[3]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[4]  Hiroshi Murase,et al.  Subspace methods for robot vision , 1996, IEEE Trans. Robotics Autom..

[5]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[6]  Paul Suetens,et al.  Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information , 1999, Medical Image Anal..

[7]  Max A. Viergever,et al.  Mutual information matching and interpolation artifacts , 1999, Medical Imaging.

[8]  Michael Unser,et al.  Optimization of mutual information for multiresolution image registration , 2000, IEEE Trans. Image Process..

[9]  Peter I. Corke,et al.  Performance Tests for Visual Servo Control Systems, with Application to Partitioned Approaches to Visual Servo Control , 2003, Int. J. Robotics Res..

[10]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[11]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[12]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[13]  Koichiro Deguchi,et al.  A Direct Interpretation of Dynamic Images with Camera and Object Motions for Vision Guided Robot Control , 2000, International Journal of Computer Vision.

[14]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[15]  Jean-Thierry Lapresté,et al.  A Hessian approach to visual servoing , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[16]  Éric Marchand,et al.  Feature tracking for visual servoing purposes , 2005, Robotics Auton. Syst..

[17]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[18]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[20]  Richard Bowden,et al.  A Unifying Framework for Mutual Information Methods for Use in Non-linear Optimisation , 2006, ECCV.

[21]  Alois Knoll,et al.  Mutual Information-Based 3D Object Tracking , 2008, International Journal of Computer Vision.

[22]  Gregory D. Hager,et al.  Kernel-based visual servoing , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  C. V. Jawahar,et al.  Visual servoing based on Gaussian mixture models , 2008, 2008 IEEE International Conference on Robotics and Automation.

[24]  Richard Bowden,et al.  Mutual Information for Lucas-Kanade Tracking (MILK): An Inverse Compositional Formulation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Éric Marchand,et al.  Entropy-based visual servoing , 2009, 2009 IEEE International Conference on Robotics and Automation.

[26]  Graziano Chesi,et al.  Visual Servoing via Advanced Numerical Methods , 2010 .

[27]  Éric Marchand,et al.  Improving mutual information-based visual servoing , 2010, 2010 IEEE International Conference on Robotics and Automation.

[28]  Christophe Collewet,et al.  Photometric Visual Servoing , 2011, IEEE Transactions on Robotics.