Compact failure modeling for devices subject to electrostatic discharge stresses - A review pertinent to CMOS reliability simulation

Abstract This paper reviews the physical mechanisms and compact modeling approaches of two physical damages in MOS devices induced by electrostatic discharge (ESD) stresses; namely gate oxide breakdown and thermal failures. Theories underlying the failure mechanism are discussed and compact models that can be used to monitor ESD induced gate oxide breakdown and thermal failure are developed. Related work reported in the literature is discussed, and benchmarking of measurement data versus simulation results are included in support of the modeling work.

[1]  R. T. Dennison,et al.  Local thermal effects in high performance bipolar devices/circuits , 1989, Proceedings of the Bipolar Circuits and Technology Meeting.

[2]  S. Oussalah,et al.  Field Acceleration Model for TDDB: Still a Valid Tool to Study the Reliability of Thick $\hbox{SiO}_{2}$-Based Dielectric Layers? , 2007, IEEE Transactions on Electron Devices.

[3]  D. S. Campbell,et al.  Thermal failure in semiconductor devices , 1990 .

[4]  J. Stathis Percolation models for gate oxide breakdown , 1999 .

[5]  M. Stockinger,et al.  Characterization and modeling of three CMOS diode structures in the CDM to HBM timeframe , 2006, 2006 Electrical Overstress/Electrostatic Discharge Symposium.

[6]  W. R. Hunter,et al.  Experimental evidence for voltage driven breakdown models in ultrathin gate oxides , 2000, 2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059).

[7]  Petar Igic,et al.  Thermal model of power semiconductor devices for electro-thermal circuit simulations , 2002, 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595).

[8]  Sung-Mo Kang,et al.  ILLIADS-T: an electrothermal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI chips , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[9]  M. Stockinger,et al.  ESD protection for advanced CMOS SOI technologies , 2005, 2005 Electrical Overstress/Electrostatic Discharge Symposium.

[10]  A. Amerasekera,et al.  Characterization and modeling of second breakdown in NMOST's for the extraction of ESD-related process and design parameters , 1991 .

[11]  Dwight L. Crook,et al.  Method of Determining Reliability Screens for Time Dependent Dielectric Breakdown , 1979, 17th International Reliability Physics Symposium.

[12]  Chenming Hu,et al.  Substrate hole current and oxide breakdown , 1986 .

[13]  Sung-Mo Kang,et al.  iTEM: a temperature-dependent electromigration reliability diagnosis tool , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  G. Wachutka,et al.  Combination of thermal subsystems modeled by rapid circuit transformation , 2007, 2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC).

[15]  Guido Groeseneken,et al.  New insights in the relation between electron trap generation and the statistical properties of oxide breakdown , 1998 .

[16]  Stephan Frei,et al.  ESD simulation with Wunsch-Bell based behavior modeling methodology , 2011, EOS/ESD Symposium Proceedings.

[17]  E. S. Schlig,et al.  Thermal properties of very fast transistors , 1970 .

[18]  Shinichi Takagi,et al.  Evidence of electron-hole cooperation in SiO/sub 2/ dielectric breakdown , 1997, 1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual.

[19]  Jean-Jacques Hajjar,et al.  CDM event simulation in SPICE: A holistic approach , 2011, EOS/ESD Symposium Proceedings.

[20]  T. Zimmer,et al.  A Scalable Electrothermal Model for Transient Self-Heating Effects in Trench-Isolated SiGe HBTs , 2012, IEEE Transactions on Electron Devices.

[21]  D. Wunsch,et al.  Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages , 1968 .

[22]  J.S. Suehle,et al.  Time-dependent breakdown of ultra-thin SiO2 gate dielectrics under pulsed biased stress , 2001, IEEE Electron Device Letters.

[23]  Dante M. Tasca,et al.  Pulse Power Failure Modes in Semiconductors , 1970 .

[24]  G. Krieger,et al.  Thermal response of integrated circuit input devices to an electrostatic energy pulse , 1987, IEEE Transactions on Electron Devices.

[25]  J. Stathis,et al.  Reliability projection for ultra-thin oxides at low voltage , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[26]  Wolfgang Wilkening,et al.  Pulsed thermal characterization of a reverse biased pn-junction for ESD HBM simulation , 1996 .

[27]  Sung-Mo Kang,et al.  Circuit-level electrothermal simulation of electrical overstress failures in advanced MOS I/O protection devices , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Ernest Y. Wu,et al.  Comprehensive physics-based breakdown model for reliability assessment of oxides with thickness ranging from 1 nm up to 12 nm , 2009, 2009 IEEE International Reliability Physics Symposium.

[29]  Steven H. Voldman Electrostatic discharge (ESD) and failure analysis: models, methodologies and mechanisms , 2002, Proceedings of the 9th International Symposium on the Physical and Failure Analysis of Integrated Circuits (Cat. No.02TH8614).

[30]  Yuanzhong Zhou,et al.  ESD Simulation using Compact Models: from I/O Cell to Full Chip , 2007, 2007 IEEE Conference on Electron Devices and Solid-State Circuits.

[31]  Bin Wang,et al.  Reliability of ultrathin silicon dioxide under combined substrate hot-electron and constant voltage tunneling stress , 2000 .

[32]  Jean-Jacques Hajjar,et al.  Investigation on effectiveness of series gate resistor in CDM ESD protection designs , 2013, 2013 IEEE 10th International Conference on ASIC.

[33]  James Stasiak,et al.  Trap creation in silicon dioxide produced by hot electrons , 1989 .

[34]  A. Ghetti,et al.  Field acceleration for oxide breakdown-can an accurate anode hole injection model resolve the E vs. 1/E controversy? , 2000, 2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059).

[35]  J. Stathis,et al.  Dielectric breakdown mechanisms in gate oxides , 2005 .

[36]  Jordi Suñé,et al.  On the breakdown statistics of very thin SiO2 films , 1990 .

[37]  S. Ramaswamy,et al.  Modeling MOS snapback and parasitic bipolar action for circuit-level ESD and high current simulations , 1996, Proceedings of International Reliability Physics Symposium.

[38]  V. Székely,et al.  Fine structure of heat flow path in semiconductor devices: a measurement and identification method , 1988 .

[39]  Yuanzhong Zhou,et al.  Prediction and Modeling of Thin Gate Oxide Breakdown Subject to Arbitrary Transient Stresses , 2010, IEEE Transactions on Electron Devices.

[40]  J. McPherson,et al.  Acceleration Factors for Thin Gate Oxide Stressing , 1985, 23rd International Reliability Physics Symposium.

[41]  J. McPherson,et al.  Molecular model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics and the reliability implications for hyper-thin gate oxide , 2000 .

[42]  J. Suehle Ultrathin gate oxide reliability: physical models, statistics, and characterization , 2002 .

[43]  Ernest Y. Wu,et al.  Voltage-dependent voltage-acceleration of oxide breakdown for ultra-thin oxides , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[44]  Arnold Berman,et al.  Time-Zero Dielectric Reliability Test by a Ramp Method , 1981, 19th International Reliability Physics Symposium.

[45]  Jean-Jacques Hajjar,et al.  vfTLP-VTH: A new method for quantifying the effectiveness of ESD protection for the CDM classification test , 2013, Microelectron. Reliab..