Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets
暂无分享,去创建一个
[1] Harald Niederreiter,et al. Updated tables of parameters of (T, M, S)‐nets , 1999 .
[2] Gary L. Mullen,et al. Construction of digital ( t,m,s )-nets from linear codes , 1996 .
[3] Wolfgang Ch. Schmid,et al. Bounds for digital nets and sequences , 1997 .
[4] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[5] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[6] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[7] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[8] Wolfgang Ch. Schmid,et al. Multivariate Walsh series, digital nets and quasi-Monte Carlo integration , 1995 .
[9] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[10] Harald Niederreiter,et al. Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series , 1996 .
[11] H. Niederreiter,et al. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .