Existence of a solution to an equation arising from the theory of Mean Field Games

Abstract We construct a small time strong solution to a nonlocal Hamilton–Jacobi equation (1.1) introduced in [48] , the so-called master equation, originating from the theory of Mean Field Games. We discover a link between metric viscosity solutions to local Hamilton–Jacobi equations studied in [2] , [19] , [20] and solutions to  (1.1) . As a consequence we recover the existence of solutions to the First Order Mean Field Games equations (1.2) , first proved in  [48] , and make a more rigorous connection between the master equation  (1.1) and the Mean Field Games equations  (1.2) .

[1]  Pierre-Louis Lions,et al.  Efficiency of the price formation process in presence of high frequency participants: a mean field game analysis , 2013, 1305.6323.

[2]  Wilfrid Gangbo,et al.  Euler–Poisson Systems as Action-Minimizing Paths in the Wasserstein Space , 2009 .

[3]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[4]  Olivier Guéant,et al.  Mean Field Games and Oil Production , 2010 .

[5]  D. Crisan,et al.  A Probabilistic Approach to Classical Solutions of the Master Equation for Large Population Equilibria , 2014, Memoirs of the American Mathematical Society.

[6]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[7]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[8]  Robert E. Lucas,et al.  Knowledge Growth and the Allocation of Time , 2011, Journal of Political Economy.

[9]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[10]  Alain Bensoussan,et al.  The Master equation in mean field theory , 2014, 1404.4150.

[11]  Minyi Huang,et al.  Large-Population LQG Games Involving a Major Player: The Nash Certainty Equivalence Principle , 2009, SIAM J. Control. Optim..

[12]  Diogo A. Gomes,et al.  Weakly coupled mean-field game systems , 2016, 1610.00204.

[13]  Hamidou Tembine,et al.  Energy-constrained Mean Field Games in Wireless Networks , 2014 .

[14]  W. Gangbo,et al.  Metric viscosity solutions of Hamilton–Jacobi equations depending on local slopes , 2015 .

[15]  Peter E. Caines,et al.  The Nash certainty equivalence principle and McKean-Vlasov systems: An invariance principle and entry adaptation , 2007, 2007 46th IEEE Conference on Decision and Control.

[16]  Filippo Santambrogio,et al.  A modest proposal for MFG with density constraints , 2011, Networks Heterog. Media.

[17]  Diogo A. Gomes,et al.  Time dependent mean-field games in the superquadratic case , 2013, 1311.6684.

[18]  P. Cardaliaguet,et al.  Mean Field Games , 2020, Lecture Notes in Mathematics.

[19]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[20]  Olivier Guéant,et al.  A reference case for mean field games models , 2009 .

[21]  Peter E. Caines,et al.  The NCE (Mean Field) Principle With Locality Dependent Cost Interactions , 2010, IEEE Transactions on Automatic Control.

[22]  L. Shapley,et al.  Values of Non-Atomic Games , 1974 .

[23]  Francois Delarue,et al.  The Master Equation for Large Population Equilibriums , 2014, 1404.4694.

[24]  Quanyan Zhu,et al.  Risk-Sensitive Mean-Field Games , 2012, IEEE Transactions on Automatic Control.

[25]  L. Ambrosio,et al.  On a class of first order Hamilton–Jacobi equations in metric spaces , 2014 .

[26]  Diogo A. Gomes,et al.  A-priori estimates for stationary mean-field games , 2012, Networks Heterog. Media.

[27]  Peter E. Caines,et al.  An Invariance Principle in Large Population Stochastic Dynamic Games , 2007, J. Syst. Sci. Complex..

[28]  Peter E. Caines,et al.  Nash, Social and Centralized Solutions to Consensus Problems via Mean Field Control Theory , 2013, IEEE Transactions on Automatic Control.

[29]  W. Gangbo,et al.  Optimal transport and large number of particles , 2013 .

[30]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[31]  L. Ambrosio Transport equation and Cauchy problem for BV vector fields , 2004 .

[32]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[33]  W. Gangbo,et al.  Weak KAM Theory on the Wasserstein Torus with Multidimensional Underlying Space , 2014 .

[34]  Ermal Feleqi The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players , 2013, Dyn. Games Appl..

[35]  Juan Li,et al.  Mean-field stochastic differential equations and associated PDEs , 2014, 1407.1215.

[36]  R. Aumann Markets with a continuum of traders , 1964 .

[37]  Pierre-Louis Lions,et al.  Large investor trading impacts on volatility , 2007 .

[38]  Minyi Huang,et al.  Mean Field Stochastic Games with Discrete States and Mixed Players , 2012, GAMENETS.

[39]  W. Gangbo,et al.  Hamiltonian ODEs in the Wasserstein space of probability measures , 2008 .

[40]  W. Gangbo,et al.  Degree Theory in Analysis and Applications , 1995 .

[41]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[42]  Diogo A. Gomes,et al.  On the existence of classical solutions for stationary extended mean field games , 2013, 1305.2696.

[43]  P. Lions,et al.  Mean field games , 2007 .

[44]  Wilfrid Gangbo,et al.  Hamilton-Jacobi equations in the Wasserstein space , 2008 .

[45]  Claire J. Tomlin,et al.  On efficiency in mean field differential games , 2013, 2013 American Control Conference.

[46]  Diogo A. Gomes,et al.  Mean-field games with logistic population dynamics , 2013, 52nd IEEE Conference on Decision and Control.

[47]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.