Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing

A high fidelity multi-physics Eulerian computational framework is presented for the simulation of supersonic parachute inflation during Mars landing. Unlike previous investigations in this area, the framework takes into account an initial folding pattern of the parachute, the flow compressibility effect on the fabric material porosity, and the interactions between supersonic fluid flows and the suspension lines. Several adaptive mesh refinement (AMR)-enabled, large edge simulation (LES)-based, simulations of a full-size disk-gap-band (DGB) parachute inflating in the low-density, low-pressure, carbon dioxide (CO2) Martian atmosphere are reported. The comparison of the drag histories and the first peak forces between the simulation results and experimental data collected during the NASA Curiosity Rover's Mars atmospheric entry shows reasonable agreements. Furthermore, a rudimentary material failure analysis is performed to provide an estimate of the safety factor for the parachute decelerator system. The proposed framework demonstrates the potential of using Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI)-based simulation tools for future supersonic parachute design.

[1]  Xiaolin Li,et al.  Numerical Modeling of Flow Through Porous Fabric Surface in Parachute Simulation , 2017 .

[2]  Robert D. Braun,et al.  Supersonic Inflatable Aerodynamic Decelerators for Use On Future Robotic Missions to Mars , 2009 .

[3]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[4]  Jody L. Davis,et al.  Reconstruction of the Mars Science Laboratory Parachute Performance , 2014 .

[5]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[6]  Kevin H. Brown,et al.  ACME - Algorithms for Contact in a Multiphysics Environment API Version 1.0 , 2001 .

[7]  T. Belytschko,et al.  Robust and provably second‐order explicit–explicit and implicit–explicit staggered time‐integrators for highly non‐linear compressible fluid–structure interaction problems , 2010 .

[8]  Ian G. Clark,et al.  Reconstructed Parachute System Performance During the Second LDSD Supersonic Flight Dynamics Test , 2016 .

[9]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[10]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[11]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[12]  Graham V. Candler,et al.  Detached eddy simulations of the MSL parachute at supersonic conditions , 2007 .

[13]  Mike Kandis,et al.  Phoenix Mars Scout parachute flight behavior and observations , 2011, 2011 Aerospace Conference.

[14]  Joanne S. Ware,et al.  Flexible Material Systems Testing , 2010 .

[15]  Charbel Farhat,et al.  A family of position- and orientation-independent embedded boundary methods for viscous flow and fluid-structure interaction problems , 2018, J. Comput. Phys..

[16]  Gregory W. Brown,et al.  Application of a three-field nonlinear fluid–structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter , 2003 .

[17]  C. G. Cooley Viking 75 project: Viking lander system primary mission performance report , 1977 .

[18]  B. Argrow,et al.  Bulk Viscosity: Past to Present , 1998 .

[19]  Carlos A. Felippa,et al.  The first ANDES elements: 9-dof plate bending triangles , 1991 .

[20]  Sebastian Grimberg,et al.  Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid‐structure interaction , 2019, International Journal for Numerical Methods in Fluids.

[21]  Allen Witkowski,et al.  Mars Exploration Rover parachute decelerator system program review , 2003 .

[22]  G. Emanuel Bulk viscosity of a dilute polyatomic gas , 1990 .

[23]  G. Emanuel Effect of bulk viscosity on a hypersonic boundary layer , 1992 .

[24]  Julian D. Maynard Aerodynamic Characteristics of Parachutes at Mach Numbers from 1.6 to 3 , 1961 .

[25]  Ramji Kamakoti,et al.  A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane , 2011 .

[26]  P. Kallemeyn,et al.  Mars Pathfinder Entry, Descent, and Landing Reconstruction , 1999 .

[27]  Helmut G. Heinrich,et al.  Aerodynamics of the supersonic guide surface parachute. , 1966 .

[28]  Nickolai Charczenko WIND-TUNNEL INVESTIGATION OF DRAG AND STABILITY OF PARACHUTES AT SUPERSONIC SPEEDS , 1964 .

[29]  Daniel Z. Huang,et al.  A Homogenized Flux-Body Force Approach for Modeling Porous Wall Boundary Conditions in Compressible Viscous Flows , 2019, 1907.09632.

[30]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[31]  Kevin G. Wang,et al.  Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid–structure interaction problems , 2011 .

[32]  Charbel Farhat,et al.  A computational framework for the simulation of high‐speed multi‐material fluid–structure interaction problems with dynamic fracture , 2015 .

[33]  F. Panerai,et al.  X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids , 2017 .

[34]  Charles S. Peskin,et al.  2-D Parachute Simulation by the Immersed Boundary Method , 2006, SIAM J. Sci. Comput..

[35]  Kevin G. Wang,et al.  Dynamic implosion of underwater cylindrical shells: Experiments and Computations , 2013 .

[36]  Charbel Farhat,et al.  Preliminary Verification and Validation Test Suite for the CFD Component of Supersonic Parachute Deployment FSI Simulations , 2018 .

[37]  A. Chen,et al.  Mars Science Laboratory Entry, Descent, and Landing System Overview , 2008, 2008 IEEE Aerospace Conference.

[38]  Juan R. Cruz,et al.  Wind Tunnel Testing of Various Disk-Gap-Band Parachutes , 2003 .

[39]  Anita Sengupta Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry , 2011 .

[40]  S. Ergun,et al.  Fluid Flow through Randomly Packed Columns and Fluidized Beds , 1949 .

[41]  John Lingard,et al.  Simulation of Parachute Fluid Structure Interaction in Supersonic Flow , 2005 .

[42]  Charbel Farhat,et al.  Simulation of Parachute Inflation Dynamics Using an Eulerian Computational Framework for Fluid-Structure Interfaces Evolving in High-Speed Turbulent Flows , 2018 .

[43]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[44]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[45]  Charbel Farhat,et al.  An embedded boundary approach for resolving the contribution of cable subsystems to fully coupled fluid‐structure interaction , 2019, International Journal for Numerical Methods in Engineering.

[46]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[47]  Carlos A. Felippa,et al.  Membrane triangles with corner drilling freedoms II: the ANDES element , 1992 .

[48]  A. Main,et al.  An embedded boundary framework for compressible turbulent flow and fluid–structure computations on structured and unstructured grids , 2014 .

[49]  Charbel Farhat,et al.  A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..

[50]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[51]  R. Skeel,et al.  Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems , 1988 .

[52]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[53]  Anita Sengupta,et al.  Supersonic Disk Gap Band Parachute Performance in the Wake of a Viking-Type Aeroshell from Mach 2 to 2.5 , 2008 .

[54]  Stéphane Lanteri,et al.  Two-dimensional viscous flow computations on the Connection Machine: unstructured meshes, upwind schemes and massively parallel computations , 1993 .

[55]  L. Townsend,et al.  Bulk viscosity as a relaxation parameter: Fact or fiction? , 1996 .

[56]  Jean-Michel Ghidaglia,et al.  The normal flux method at the boundary for multidimensional finite volume approximations in CFD , 2005 .

[57]  O. Matar,et al.  Bulk viscosity of molecular fluids. , 2018, The Journal of chemical physics.