Constrained Optimization of Fuzzy Decision Trees

This paper proposes to build and optimize Takagi-Sugeno-like fuzzy regression trees with constraints aiming at preserving the interpretability of the rules. For this purpose, we state five requirements and deduce some conditions such as membership functions shared by the rules and strong fuzzy partitions on input variable domains. The membership functions are automatically placed thanks to an evolutionary strategy. We propose also a heuristics in order to find a sub-optimal structure of the tree.

[1]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[2]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[3]  Ebrahim H. Mamdani,et al.  A linguistic self-organizing process controller , 1979, Autom..

[4]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[5]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[7]  I. Hatono,et al.  Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[8]  H. Ishibuchi,et al.  Empirical study on learning in fuzzy systems by rice taste analysis , 1994 .

[9]  M. Shaw,et al.  Induction of fuzzy decision trees , 1995 .

[10]  Cezary Z. Janikow,et al.  A Genetic Algorithm for Optimizing Fuzzy Decision Trees , 1995, ICGA.

[11]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[12]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[13]  Francisco Herrera,et al.  Genetic Algorithms and Soft Computing , 1996 .

[14]  Witold Pedrycz,et al.  Optimization of fuzzy models , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[15]  C. Marsala,et al.  Apprentissage inductif en presence de donnees imprecises : construction et utilisation d'arbres de decision flous , 1998 .

[16]  José Valente de Oliveira,et al.  Semantic constraints for membership function optimization , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[17]  Francisco Herrera,et al.  A proposal for improving the accuracy of linguistic modeling , 2000, IEEE Trans. Fuzzy Syst..

[18]  S. Guillaume Induction de règles floues interprétables , 2001 .

[19]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.